Dermatologist-level classification of skin cancer with deep neural networks

卷积神经网络 皮肤癌 人工智能 深度学习 计算机科学 活检 深层神经网络 皮肤活检 皮肤病科 模式识别(心理学) 医学 癌症 病理 内科学
作者
Andre Esteva,Brett Kuprel,Roberto A. Novoa,Justin Ko,Susan M. Swetter,Helen M. Blau,Sebastian Thrun
出处
期刊:Nature [Nature Portfolio]
卷期号:542 (7639): 115-118 被引量:11361
标识
DOI:10.1038/nature21056
摘要

An artificial intelligence trained to classify images of skin lesions as benign lesions or malignant skin cancers achieves the accuracy of board-certified dermatologists. Andre Esteva et al. used 129,450 clinical images of skin disease to train a deep convolutional neural network to classify skin lesions. The result is an algorithm that can classify lesions from photographic images similar to those taken with a mobile phone. The accuracy of the system in detecting malignant melanomas and carcinomas matched that of trained dermatologists. The authors suggest that the technique could be used outside the clinic as a visual screen for cancer. Skin cancer, the most common human malignancy1,2,3, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs)4,5 show potential for general and highly variable tasks across many fine-grained object categories6,7,8,9,10,11. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images—two orders of magnitude larger than previous datasets12—consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
听风完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
琉璃929完成签到,获得积分10
3秒前
小马甲应助香草采纳,获得10
4秒前
ming发布了新的文献求助10
5秒前
5秒前
大个应助李蕊采纳,获得10
5秒前
眼里的萧萧雨完成签到,获得积分20
7秒前
午见千山应助呆萌芙蓉采纳,获得10
8秒前
8秒前
superpharm完成签到,获得积分10
9秒前
WYQ发布了新的文献求助10
9秒前
9秒前
10秒前
酷酷的鸿完成签到,获得积分10
10秒前
WZH发布了新的文献求助10
10秒前
11秒前
jjaigll12完成签到 ,获得积分10
11秒前
12秒前
13秒前
爆米花应助ming采纳,获得10
13秒前
小二郎应助狂野老黑采纳,获得10
13秒前
14秒前
15秒前
李俊枫发布了新的文献求助30
15秒前
MchemG应助shihui采纳,获得10
15秒前
17秒前
青菜虫子发布了新的文献求助10
17秒前
现实的俊驰完成签到 ,获得积分10
18秒前
11发布了新的文献求助10
19秒前
20秒前
ff发布了新的文献求助10
21秒前
Owen应助杨洋采纳,获得10
21秒前
Lucas应助风语村采纳,获得10
23秒前
24秒前
25秒前
爱学习的小菜鸡完成签到,获得积分20
26秒前
芋头完成签到,获得积分10
27秒前
11完成签到,获得积分10
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240896
求助须知:如何正确求助?哪些是违规求助? 3774532
关于积分的说明 11853661
捐赠科研通 3429640
什么是DOI,文献DOI怎么找? 1882539
邀请新用户注册赠送积分活动 934335
科研通“疑难数据库(出版商)”最低求助积分说明 840952