A framework for evacuation hotspot detection after large scale disasters using location data from smartphones

热点(地质) 计算机科学 比例(比率) 计算机安全 地理 地图学 地质学 地震学
作者
Satish V. Ukkusuri,Kota Tsubouchi,Akihito Sudo,Yoshihide Sekimoto
出处
期刊:Advances in Geographic Information Systems 被引量:12
标识
DOI:10.1145/2996913.2997014
摘要

Large scale disasters cause severe social disorder and trigger mass evacuation activities. Managing the evacuation shelters efficiently is crucial for disaster management. Kumamoto prefecture, Japan, was hit by an enormous (Magnitude 7.3) earthquake on 16th of April, 2016. As a result, more than 10,000 buildings were severely damaged and over 100,000 people had to evacuate from their homes. After the earthquake, it took the decision makers several days to grasp the locations where people were evacuating, which delayed of distribution of supply and rescue. This situation was made even more complex since some people evacuated to places that were not designated as evacuation shelters. Conventional methods for grasping evacuation hotspots require on-foot field surveys that take time and are difficult to execute right after the hazard in the confusion.We propose a novel framework to efficiently estimate the evacuation hotspots after large disasters using location data collected from smartphones. To validate our framework and show the useful analysis using our output, we demonstrated the framework on the Kumamoto earthquake using GPS data of smartphones collected by Yahoo Japan. We verified that our estimation accuracy of evacuation hotspots were very high by checking the located facilities and also by comparing the population transition results with newspaper reports. Additionally, we demonstrated analysis using our framework outputs that would help decision makers, such as the population transition and function period of each hotspot. The efficiency of our framework is also validated by checking the processing time, showing that it could be utilized efficiently in disasters of any scale. Our framework provides useful output for decision makers that manage evacuation shelters after various kinds of large scale disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助WL采纳,获得10
1秒前
今后应助机灵白桃采纳,获得10
5秒前
Orange应助镜羽采纳,获得10
6秒前
研友_8WEa2n发布了新的文献求助10
6秒前
是个聪明蛋完成签到,获得积分10
6秒前
斯文的小旋风举报zhuhaot求助涉嫌违规
7秒前
cdercder应助小丽酱采纳,获得10
8秒前
9秒前
10秒前
13秒前
13秒前
14秒前
悬夜完成签到,获得积分10
14秒前
爱撒娇的盼山完成签到,获得积分10
14秒前
可爱的函函应助song_song采纳,获得10
15秒前
镜羽发布了新的文献求助10
18秒前
18秒前
隔壁小曾发布了新的文献求助10
19秒前
zydaphne完成签到 ,获得积分10
20秒前
21秒前
screct完成签到,获得积分10
23秒前
科研小白发布了新的文献求助10
24秒前
25秒前
26秒前
MC123完成签到,获得积分10
26秒前
27秒前
yy完成签到,获得积分10
27秒前
27秒前
song_song发布了新的文献求助10
29秒前
30秒前
芦荟板蓝根完成签到,获得积分10
31秒前
典雅的语海完成签到,获得积分10
31秒前
完美世界应助科研通管家采纳,获得20
32秒前
科目三应助科研通管家采纳,获得10
32秒前
丘比特应助科研通管家采纳,获得10
32秒前
乐乐应助科研通管家采纳,获得20
32秒前
领导范儿应助科研通管家采纳,获得30
32秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
FashionBoy应助科研通管家采纳,获得10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794581
求助须知:如何正确求助?哪些是违规求助? 3339416
关于积分的说明 10295977
捐赠科研通 3056108
什么是DOI,文献DOI怎么找? 1676896
邀请新用户注册赠送积分活动 804920
科研通“疑难数据库(出版商)”最低求助积分说明 762198