Engineering Natural Killer Cells for Cancer Immunotherapy

癌症免疫疗法 免疫疗法 自然(考古学) 癌症 生物 癌症研究 免疫学 计算生物学 免疫系统 遗传学 古生物学
作者
Katayoun Rezvani,Rayne H. Rouce,Enli Liu,Elizabeth J. Shpall
出处
期刊:Molecular Therapy [Elsevier BV]
卷期号:25 (8): 1769-1781 被引量:390
标识
DOI:10.1016/j.ymthe.2017.06.012
摘要

The past several years have seen tremendous advances in the engineering of immune effector cells as therapy for cancer. While chimeric antigen receptors (CARs) have been used extensively to redirect the specificity of autologous T cells against hematological malignancies with striking clinical results, studies of CAR-modified natural killer (NK) cells have been largely preclinical. In this review, we focus on recent advances in NK cell engineering, particularly on preclinical evidence suggesting that NK cells may be as effective as T cells in recognizing and killing targets after genetic modification. We will discuss strategies to introduce CARs into both primary NK cells and NK cell lines in an effort to provide antigen specificity, the challenges of manufacturing engineered NK cells, and evidence supporting the effectiveness of this approach from preclinical and early-phase clinical studies using CAR-engineered NK cells. CAR-NK cells hold great promise as a novel cellular immunotherapy against refractory malignancies. Notably, NK cells can provide an "off-the-shelf" product, eliminating the need for a personalized and patient-specific product that plagues current CAR-T cell therapies. The ability to more potently direct NK cell-mediated cytotoxicity against refractory tumors through the expression of CAR is likely to contribute to the recent paradigm shift in cancer treatment. The past several years have seen tremendous advances in the engineering of immune effector cells as therapy for cancer. While chimeric antigen receptors (CARs) have been used extensively to redirect the specificity of autologous T cells against hematological malignancies with striking clinical results, studies of CAR-modified natural killer (NK) cells have been largely preclinical. In this review, we focus on recent advances in NK cell engineering, particularly on preclinical evidence suggesting that NK cells may be as effective as T cells in recognizing and killing targets after genetic modification. We will discuss strategies to introduce CARs into both primary NK cells and NK cell lines in an effort to provide antigen specificity, the challenges of manufacturing engineered NK cells, and evidence supporting the effectiveness of this approach from preclinical and early-phase clinical studies using CAR-engineered NK cells. CAR-NK cells hold great promise as a novel cellular immunotherapy against refractory malignancies. Notably, NK cells can provide an "off-the-shelf" product, eliminating the need for a personalized and patient-specific product that plagues current CAR-T cell therapies. The ability to more potently direct NK cell-mediated cytotoxicity against refractory tumors through the expression of CAR is likely to contribute to the recent paradigm shift in cancer treatment. The past several years have seen tremendous advances in the engineering of immune effector cells as therapy for cancer. Chimeric antigen receptors (CARs) have been used extensively to redirect the specificity of autologous T cells against lymphoid leukemia and lymphoma with striking clinical results. The most success has been reported in acute lymphoblastic leukemia (ALL), with several groups reporting complete remission (CR) rates as high as 90% after administration of a single dose of CD19-CAR-T cells following lymphodepleting chemotherapy, although the responses have been short lived in some cases. The favorable responses in early-phase trials of CD19-CAR-T cells (even in heavily pretreated children and adults)1Maude S.L. Frey N. Shaw P.A. Aplenc R. Barrett D.M. Bunin N.J. Chew A. Gonzalez V.E. Zheng Z. Lacey S.F. et al.Chimeric antigen receptor T cells for sustained remissions in leukemia.N. Engl. J. Med. 2014; 371: 1507-1517Crossref PubMed Scopus (1214) Google Scholar, 2Davila M.L. Riviere I. Wang X. Bartido S. Park J. Curran K. Chung S.S. Stefanski J. Borquez-Ojeda O. Olszewska M. et al.Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia.Sci. Transl. Med. 2014; 6: 224ra25Crossref PubMed Scopus (690) Google Scholar, 3Lee D.W. Kochenderfer J.N. Stetler-Stevenson M. Cui Y.K. Delbrook C. Feldman S.A. Fry T.J. Orentas R. Sabatino M. Shah N.N. et al.T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial.Lancet. 2015; 385: 517-528Abstract Full Text Full Text PDF PubMed Scopus (695) Google Scholar have resulted in ongoing commercialization efforts in an attempt to make this therapy more widely available.4June C.H. Riddell S.R. Schumacher T.N. Adoptive cellular therapy: a race to the finish line.Sci. Transl. Med. 2015; 7: 280ps7Crossref PubMed Scopus (129) Google Scholar, 5Sadelain M. CAR therapy: the CD19 paradigm.J. Clin. Invest. 2015; 125: 3392-3400Crossref PubMed Scopus (79) Google Scholar However, CAR-modified T cells have a number of practical limitations. The generation of an autologous CAR-T cell product for each individual patient is logistically cumbersome and too restrictive for general clinical use. The manufacturing of CAR-T cells often takes a number of weeks, making it impractical for the treatment of a patient with rapidly advancing disease. Furthermore, it is not always possible to collect enough lymphocytes from heavily pretreated (and often lymphopenic) patients to allow for the successful generation of clinically relevant doses of CAR-T cells. An allogeneic "off-the-shelf" product could overcome these logistic challenges; however, allogeneic T cells (even if human leukocyte antigen [HLA] matched) carry a significant risk of graft-versus-host disease (GVHD) mediated through their native α-β T cell receptor (TCR). Natural killer (NK) cells are highly cytotoxic immune effectors, killing their targets in a non-specific manner.6Locatelli F. Moretta F. Brescia L. Merli P. Natural killer cells in the treatment of high-risk leukemia.Semin. Immunol. 2014; 26: 173-179Crossref PubMed Scopus (0) Google Scholar, 7Farag S.S. Caligiuri M.A. Human natural killer cell development and biology.Blood Rev. 2006; 20: 123-137Abstract Full Text Full Text PDF PubMed Scopus (284) Google Scholar NK cells lack the potential to cause GVHD8Moretta L. Locatelli F. Pende D. Marcenaro E. Mingari M.C. Moretta A. Killer Ig-like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation.Blood. 2011; 117: 764-771Crossref PubMed Scopus (135) Google Scholar, 9Yoon S.R. Lee Y.S. Yang S.H. Ahn K.H. Lee J.H. Lee J.H. Kim D.Y. Kang Y.A. Jeon M. Seol M. et al.Generation of donor natural killer cells from CD34(+) progenitor cells and subsequent infusion after HLA-mismatched allogeneic hematopoietic cell transplantation: a feasibility study.Bone Marrow Transplant. 2010; 45: 1038-1046Crossref PubMed Scopus (55) Google Scholar, 10Miller J.S. Soignier Y. Panoskaltsis-Mortari A. McNearney S.A. Yun G.H. Fautsch S.K. McKenna D. Le C. Defor T.E. Burns L.J. et al.Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer.Blood. 2005; 105: 3051-3057Crossref PubMed Scopus (820) Google Scholar, 11Rubnitz J.E. Inaba H. Ribeiro R.C. Pounds S. Rooney B. Bell T. Pui C.H. Leung W. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia.J. Clin. Oncol. 2010; 28: 955-959Crossref PubMed Scopus (277) Google Scholar and thus open opportunities to produce an off-the-shelf allogeneic product that could be readily available for immediate clinical use. Moreover, as engineered NK cells should also retain their full array of native receptors, they have the potential to exert anticancer activity through mechanisms other than that dictated by the specificity of the CAR, which in principle could reduce the risk of relapse or resistance mediated by loss of CAR-targeted antigen, as reported for CAR-T cell therapy.3Lee D.W. Kochenderfer J.N. Stetler-Stevenson M. Cui Y.K. Delbrook C. Feldman S.A. Fry T.J. Orentas R. Sabatino M. Shah N.N. et al.T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial.Lancet. 2015; 385: 517-528Abstract Full Text Full Text PDF PubMed Scopus (695) Google Scholar, 12Sotillo E. Barrett D.M. Black K.L. Bagashev A. Oldridge D. Wu G. Sussman R. Lanauze C. Ruella M. Gazzara M.R. et al.Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy.Cancer Discov. 2015; 5: 1282-1295Crossref PubMed Scopus (140) Google Scholar Thus, the inherent qualities of NK cells make them promising candidates for immunotherapy. Augmenting NK cell antitumor responses by introducing antigen specificity through genetic modification is a subject of intense investigation in the field of cancer immuno-oncology. In this review, we focus on recent advances in NK cell engineering, particularly on preclinical evidence suggesting that NK cells may be as equally effective as T cells in recognizing and killing targets after genetic modification. We will discuss strategies to introduce CARs into both primary NK cells and NK cell lines in an effort to provide antigen specificity, the challenges of manufacturing engineered NK cells, and evidence supporting the effectiveness of this approach from preclinical and early-phase clinical studies using CAR-engineered NK cells. NK cells are innate immune effectors with the ability to exert rapid cytotoxicity against cancer and virus-infected cells without prior sensitization, hence the designation "natural" killers. NK-mediated cytotoxicity occurs in a HLA-unrestricted fashion, a desirable quality for cancer immunotherapy, although NK cells acquire cytotoxic function after encountering and recognizing self-HLA molecules during a process termed "licensing" or NK cell education.13Kim S. Poursine-Laurent J. Truscott S.M. Lybarger L. Song Y.J. Yang L. French A.R. Sunwoo J.B. Lemieux S. Hansen T.H. Yokoyama W.M. Licensing of natural killer cells by host major histocompatibility complex class I molecules.Nature. 2005; 436: 709-713Crossref PubMed Scopus (752) Google Scholar, 14Davies J.O. Stringaris K. Barrett A.J. Rezvani K. Opportunities and limitations of NK cells as adoptive therapy for malignant disease.Cytotherapy. 2014; 16: 1453-1466Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 15Wagner J.A. Berrien-Elliott M.M. Rosario M. Leong J.W. Jewell B.A. Schappe T. Abdel-Latif S. Fehniger T.A. Cytokine-induced memory-like differentiation enhances unlicensed natural killer cell antileukemia and FcγRIIIa-triggered responses.Biol. Blood Marrow Transplant. 2016; 23: 398-404Abstract Full Text Full Text PDF PubMed Scopus (2) Google Scholar NK cells are characterized by a lack of CD3/TCR molecules and expression of CD16 and CD56 surface antigens. While the majority of NK cells are in the blood, liver, spleen, and bone marrow, they are also found to a lesser extent in lymph nodes.15Wagner J.A. Berrien-Elliott M.M. Rosario M. Leong J.W. Jewell B.A. Schappe T. Abdel-Latif S. Fehniger T.A. Cytokine-induced memory-like differentiation enhances unlicensed natural killer cell antileukemia and FcγRIIIa-triggered responses.Biol. Blood Marrow Transplant. 2016; 23: 398-404Abstract Full Text Full Text PDF PubMed Scopus (2) Google Scholar, 16Cooper M.A. Fehniger T.A. Turner S.C. Chen K.S. Ghaheri B.A. Ghayur T. Carson W.E. Caligiuri M.A. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset.Blood. 2001; 97: 3146-3151Crossref PubMed Scopus (805) Google Scholar, 17Campbell J.J. Qin S. Unutmaz D. Soler D. Murphy K.E. Hodge M.R. Wu L. Butcher E.C. Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire.J. Immunol. 2001; 166: 6477-6482Crossref PubMed Google Scholar, 18De Maria A. Bozzano F. Cantoni C. Moretta L. Revisiting human natural killer cell subset function revealed cytolytic CD56(dim)CD16+ NK cells as rapid producers of abundant IFN-gamma on activation.Proc. Natl. Acad. Sci. USA. 2011; 108: 728-732Crossref PubMed Scopus (0) Google Scholar NK cell functions, including degranulation, cytokine release, and cytotoxicity, are governed by a balance between signals received from inhibitory receptors (notably, the killer Ig-like receptors [KIRs] and the heterodimeric C-type lectin receptor [NKG2A]) and activating receptors (in particular, the natural cytotoxicity receptors [NCRs] NKp46, NKp30, NKp44, and the C-type lectin-like activating immunoreceptor NKG2D7Farag S.S. Caligiuri M.A. Human natural killer cell development and biology.Blood Rev. 2006; 20: 123-137Abstract Full Text Full Text PDF PubMed Scopus (284) Google Scholar) that recognize ligands on their cellular targets. These receptors therefore require mechanisms to prevent unintentional activation against normal tissues, referred to as "tolerance to self." Engagement of inhibitory KIRs (iKIRs) by HLA class I molecules leads to transmission of an inhibitory signal that blocks NK cell triggering during effector responses. Through a concept known as the "missing self" hypothesis, when mature NK cells encounter transformed cells lacking HLA class I, which occurs upon viral or malignant transformation, the inhibitory receptors on the surface of the NK cell are not engaged. In this context, the NK cell does not receive inhibitory signals.19Kärre K. Immunology. A perfect mismatch.Science. 2002; 295: 2029-2031Crossref PubMed Scopus (0) Google Scholar, 20Campbell K.S. Hasegawa J. Natural killer cell biology: an update and future directions.J. Allergy Clin. Immunol. 2013; 132: 536-544Abstract Full Text Full Text PDF PubMed Scopus (124) Google Scholar In parallel, cellular stress and DNA damage, both of which occur in cells during viral or malignant transformation, result in upregulation of "stress ligands" that can be recognized by activating NK receptors, resulting in a positive signal for NK cells to kill the target.20Campbell K.S. Hasegawa J. Natural killer cell biology: an update and future directions.J. Allergy Clin. Immunol. 2013; 132: 536-544Abstract Full Text Full Text PDF PubMed Scopus (124) Google Scholar, 21Caligiuri M.A. Human natural killer cells.Blood. 2008; 112: 461-469Crossref PubMed Scopus (821) Google Scholar, 22Bradley M. Zeytun A. Rafi-Janajreh A. Nagarkatti P.S. Nagarkatti M. Role of spontaneous and interleukin-2-induced natural killer cell activity in the cytotoxicity and rejection of Fas1 and Fas- tumor cells.Blood. 1998; 92: 4248-4255PubMed Google Scholar NK cells can directly kill tumor cells through release of cytoplasmic granules containing perforin and granzyme,22Bradley M. Zeytun A. Rafi-Janajreh A. Nagarkatti P.S. Nagarkatti M. Role of spontaneous and interleukin-2-induced natural killer cell activity in the cytotoxicity and rejection of Fas1 and Fas- tumor cells.Blood. 1998; 92: 4248-4255PubMed Google Scholar, 23Screpanti V. Wallin R.P. Ljunggren H.G. Grandien A. A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells.J. Immunol. 2001; 167: 2068-2073Crossref PubMed Google Scholar, 24Kayagaki N. Yamaguchi N. Nakayama M. Takeda K. Akiba H. Tsutsui H. Okamura H. Nakanishi K. Okumura K. Yagita H. Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells.J. Immunol. 1999; 163: 1906-1913PubMed Google Scholar and expression of tumor necrosis factor (TNF) family members such as FasL or TNF-related apoptosis-inducing ligand (TRAIL), which induce tumor cell apoptosis by interacting with their respective receptors.22Bradley M. Zeytun A. Rafi-Janajreh A. Nagarkatti P.S. Nagarkatti M. Role of spontaneous and interleukin-2-induced natural killer cell activity in the cytotoxicity and rejection of Fas1 and Fas- tumor cells.Blood. 1998; 92: 4248-4255PubMed Google Scholar, 23Screpanti V. Wallin R.P. Ljunggren H.G. Grandien A. A central role for death receptor-mediated apoptosis in the rejection of tumors by NK cells.J. Immunol. 2001; 167: 2068-2073Crossref PubMed Google Scholar, 24Kayagaki N. Yamaguchi N. Nakayama M. Takeda K. Akiba H. Tsutsui H. Okamura H. Nakanishi K. Okumura K. Yagita H. Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells.J. Immunol. 1999; 163: 1906-1913PubMed Google Scholar, 25Joncker N.T. Shifrin N. Delebecque F. Raulet D.H. Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment.J. Exp. Med. 2010; 207: 2065-2072Crossref PubMed Scopus (137) Google Scholar Additionally, antibody-dependent cellular cytotoxicity (ADCC), mediated by the Fc receptor CD16, can trigger NK cell degranulation against antibody-coated target cells.7Farag S.S. Caligiuri M.A. Human natural killer cell development and biology.Blood Rev. 2006; 20: 123-137Abstract Full Text Full Text PDF PubMed Scopus (284) Google Scholar CD56dim NK cells express high levels of CD16, while CD56bright NK cells are CD16 dim or negative16Cooper M.A. Fehniger T.A. Turner S.C. Chen K.S. Ghaheri B.A. Ghayur T. Carson W.E. Caligiuri M.A. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset.Blood. 2001; 97: 3146-3151Crossref PubMed Scopus (805) Google Scholar (Figure 1). Their rapid killing and broad cytotoxicity make NK cells uniquely primed for use in adoptive therapy. In vitro, NK cells exert cytotoxicity against a number of hematologic malignancies, including acute myeloid leukemia (AML),26Lotzová E. Savary C.A. Herberman R.B. Inhibition of clonogenic growth of fresh leukemia cells by unstimulated and IL-2 stimulated NK cells of normal donors.Leuk. Res. 1987; 11: 1059-1066Abstract Full Text PDF PubMed Google Scholar, 27Stringaris K. Sekine T. Khoder A. Alsuliman A. Razzaghi B. Sargeant R. Pavlu J. Brisley G. de Lavallade H. Sarvaria A. et al.Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia.Haematologica. 2013; 99: 836-847Crossref Scopus (7) Google Scholar, 28Fauriat C. Just-Landi S. Mallet F. Arnoulet C. Sainty D. Olive D. Costello R.T. Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction.Blood. 2007; 109: 323-330Crossref PubMed Scopus (172) Google Scholar ALL,29Satwani P. Bavishi S. Saha A. Zhao F. Ayello J. van de Ven C. Chu Y. Cairo M.S. Upregulation of NKG2D ligands in acute lymphoblastic leukemia and non-Hodgkin lymphoma cells by romidepsin and enhanced in vitro and in vivo natural killer cell cytotoxicity.Cytotherapy. 2014; 16: 1431-1440Abstract Full Text Full Text PDF PubMed Google Scholar, 30Jin F. Lin H. Gao S. Hu Z. Zuo S. Sun L. Jin C. Li W. Yang Y. The anti-tumor role of NK cells in vivo pre-activated and restimulated by interleukins in acute lymphoblastic leukemia.Oncotarget. 2016; 7: 79187Crossref PubMed Scopus (3) Google Scholar, 31Rouce R.H. Shaim H. Sekine T. Weber G. Ballard B. Ku S. Barese C. Murali V. Wu M.F. Liu H. et al.The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia.Leukemia. 2016; 30: 800-811Crossref PubMed Scopus (3) Google Scholar, 32Pfeiffer M. Schumm M. Feuchtinger T. Dietz K. Handgretinger R. Lang P. Intensity of HLA class I expression and KIR-mismatch determine NK-cell mediated lysis of leukaemic blasts from children with acute lymphatic leukaemia.Br. J. Haematol. 2007; 138: 97-100Crossref PubMed Scopus (0) Google Scholar, 33Bachanova V. Miller J.S. NK cells in therapy of cancer.Crit. Rev. Oncog. 2014; 19: 133-141Crossref PubMed Google Scholar multiple myeloma (MM),34Shah N. Martin-Antonio B. Yang H. Ku S. Lee D.A. Cooper L.J. Decker W.K. Li S. Robinson S.N. Sekine T. et al.Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity.PLoS ONE. 2013; 8: e76781Crossref PubMed Scopus (57) Google Scholar, 35El-Sherbiny Y.M. Meade J.L. Holmes T.D. McGonagle D. Mackie S.L. Morgan A.W. Cook G. Feyler S. Richards S.J. Davies F.E. et al.Requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells.Cancer Res. 2007; 67: 8444-8449Crossref PubMed Scopus (0) Google Scholar, 36Swift B.E. Williams B.A. Kosaka Y. Wang X.H. Medin J.A. Viswanathan S. Martinez-Lopez J. Keating A. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model.Haematologica. 2012; 97: 1020-1028Crossref PubMed Scopus (0) Google Scholar, 37Davies F.E. Raje N. Hideshima T. Lentzsch S. Young G. Tai Y.T. Lin B. Podar K. Gupta D. Chauhan D. et al.Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma.Blood. 2001; 98: 210-216Crossref PubMed Scopus (730) Google Scholar as well as many solid tumors including neuroblastoma, ovarian, colon, renal cell, and gastric carcinomas.33Bachanova V. Miller J.S. NK cells in therapy of cancer.Crit. Rev. Oncog. 2014; 19: 133-141Crossref PubMed Google Scholar, 38Liu Y. Wu H.W. Sheard M.A. Sposto R. Somanchi S.S. Cooper L.J. Lee D.A. Seeger R.C. Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy.Clin. Cancer Res. 2013; 19: 2132-2143Crossref PubMed Scopus (44) Google Scholar, 39Rusakiewicz S. Semeraro M. Sarabi M. Desbois M. Locher C. Mendez R. Vimond N. Concha A. Garrido F. Isambert N. et al.Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors.Cancer Res. 2013; 73: 3499-3510Crossref PubMed Scopus (98) Google Scholar, 40Mamessier E. Sylvain A. Thibult M.L. Houvenaeghel G. Jacquemier J. Castellano R. Gonçalves A. André P. Romagné F. Thibault G. et al.Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity.J. Clin. Invest. 2011; 121: 3609-3622Crossref PubMed Scopus (197) Google Scholar, 41Gras Navarro A. Björklund A.T. Chekenya M. Therapeutic potential and challenges of natural killer cells in treatment of solid tumors.Front. Immunol. 2015; 6: 202Crossref PubMed Google Scholar, 42Kailayangiri S. Altvater B. Spurny C. Jamitzky S. Schelhaas S. Jacobs A.H. Wiek C. Roellecke K. Hanenberg H. Hartmann W. et al.Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G.OncoImmunology. 2016; 6: e1250050Crossref PubMed Scopus (0) Google Scholar However, many tumors develop evasion strategies to circumvent killing by autologous NK cells.27Stringaris K. Sekine T. Khoder A. Alsuliman A. Razzaghi B. Sargeant R. Pavlu J. Brisley G. de Lavallade H. Sarvaria A. et al.Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia.Haematologica. 2013; 99: 836-847Crossref Scopus (7) Google Scholar, 31Rouce R.H. Shaim H. Sekine T. Weber G. Ballard B. Ku S. Barese C. Murali V. Wu M.F. Liu H. et al.The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia.Leukemia. 2016; 30: 800-811Crossref PubMed Scopus (3) Google Scholar For example, some leukemia and lymphoma cells maintain high surface expression of HLA molecules, making them invisible to NK attack,31Rouce R.H. Shaim H. Sekine T. Weber G. Ballard B. Ku S. Barese C. Murali V. Wu M.F. Liu H. et al.The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia.Leukemia. 2016; 30: 800-811Crossref PubMed Scopus (3) Google Scholar, 32Pfeiffer M. Schumm M. Feuchtinger T. Dietz K. Handgretinger R. Lang P. Intensity of HLA class I expression and KIR-mismatch determine NK-cell mediated lysis of leukaemic blasts from children with acute lymphatic leukaemia.Br. J. Haematol. 2007; 138: 97-100Crossref PubMed Scopus (0) Google Scholar or may lack ligands that signal through activating NK cell receptors.31Rouce R.H. Shaim H. Sekine T. Weber G. Ballard B. Ku S. Barese C. Murali V. Wu M.F. Liu H. et al.The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia.Leukemia. 2016; 30: 800-811Crossref PubMed Scopus (3) Google Scholar Thus, many groups have explored strategies to enhance the activity of NK cells, including the use of cytokines and artificial antigen-presenting cells (APCs) with enhanced costimulatory molecules as feeder cells43Koepsell S.A. Miller J.S. McKenna Jr., D.H. Natural killer cells: a review of manufacturing and clinical utility.Transfusion. 2013; 53: 404-410Crossref PubMed Scopus (0) Google Scholar, 44Leong J.W. Chase J.M. Romee R. Schneider S.E. Sullivan R.P. Cooper M.A. Fehniger T.A. Pre-activation with IL-12, IL-15, and IL-18 induces CD25 and a functional high affinity IL-2 receptor on human cytokine-induced memory-like NK cells.Biol. Blood Marrow Transplant. 2014; 20: 463-473Abstract Full Text Full Text PDF PubMed Google Scholar, 45Miller J.S. Rooney C.M. Curtsinger J. McElmurry R. McCullar V. Verneris M.R. Lapteva N. McKenna D. Wagner J.E. Blazar B.R. Tolar J. Expansion and homing of adoptively transferred human natural killer cells in immunodeficient mice varies with product preparation and in vivo cytokine administration: implications for clinical therapy.Biol. Blood Marrow Transplant. 2014; 20: 1252-1257Abstract Full Text Full Text PDF PubMed Google Scholar, 46Berg M. Lundqvist A. McCoy Jr., P. Samsel L. Fan Y. Tawab A. Childs R. Berg. Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells.Cytotherapy. 2009; 11: 341-355Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar for their in vivo expansion. Following incubation with cytokines, particularly interleukin (IL)-2 or IL-15, NK cells acquire the capacity to lyse a broad array of fresh and cultured tumor targets not normally sensitive to NK lysis.43Koepsell S.A. Miller J.S. McKenna Jr., D.H. Natural killer cells: a review of manufacturing and clinical utility.Transfusion. 2013; 53: 404-410Crossref PubMed Scopus (0) Google Scholar, 44Leong J.W. Chase J.M. Romee R. Schneider S.E. Sullivan R.P. Cooper M.A. Fehniger T.A. Pre-activation with IL-12, IL-15, and IL-18 induces CD25 and a functional high affinity IL-2 receptor on human cytokine-induced memory-like NK cells.Biol. Blood Marrow Transplant. 2014; 20: 463-473Abstract Full Text Full Text PDF PubMed Google Scholar, 45Miller J.S. Rooney C.M. Curtsinger J. McElmurry R. McCullar V. Verneris M.R. Lapteva N. McKenna D. Wagner J.E. Blazar B.R. Tolar J. Expansion and homing of adoptively transferred human natural killer cells in immunodeficient mice varies with product preparation and in vivo cytokine administration: implications for clinical therapy.Biol. Blood Marrow Transplant. 2014; 20: 1252-1257Abstract Full Text Full Text PDF PubMed Google Scholar, 46Berg M. Lundqvist A. McCoy Jr., P. Samsel L. Fan Y. Tawab A. Childs R. Berg. Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells.Cytotherapy. 2009; 11: 341-355Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 47Rezvani K. Rouce R.H. The application of natural killer cell immunotherapy for the treatment of cancer.Front. Immunol. 2015; 6: 578Crossref PubMed Scopus (59) Google Scholar, 48Ni J. Miller M. Stojanovic A. Garbi N. Cerwenka A. Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors.J. Exp. Med. 2012; 209: 2351-2365Crossref PubMed Scopus (135) Google Scholar Another strategy is combination therapy with monoclonal antibodies to boost ADCC.49Romain G. Senyukov V. Rey-Villamizar N. Merouane A. Kelton W. Liadi I. Mahendra A. Charab W. Georgiou G. Roysam B. et al.Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells.Blood. 2014; 124: 3241-3249Crossref PubMed Scopus (0) Google Scholar, 50Kanazawa T. Hiramatsu Y. Iwata S. Siddiquey M. Sato Y. Suzuki M. Ito Y. Goshima F. Murata T. Kimura H. Anti-CCR4 monoclonal antibody mogamulizumab for the treatment of EBV-associated T- and NK-cell lymphoproliferative diseases.Clin. Cancer Res. 2014; 20: 5075-5084Crossref PubMed Scopus (8) Google Scholar, 51Lin W. Voskens C.J. Zhang X. Schindler D.G. Wood A. Burch E. Wei Y. Chen L. Tian G. Tamada K. et al.Fc-dependent expression of CD137 on human NK cells: insights into "agonistic" effects of anti-CD137 monoclonal antibodies.Blood. 2008; 112: 699-707Crossref PubMed Scopus (54) Google Scholar, 52Benson Jr., D.M. Bakan C.E. Zhang S. Collins S.M. Liang J. Srivastava S. Hofmeister C.C. Efebera Y. Andre P. Romagne F. et al.IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect.Blood. 2011; 118: 6387-6391Crossref PubMed Scopus (0) Google Scholar, 53Terszowski G. Klein C. Stern M. KIR/HLA interactions negatively affect rituximab- but not GA101 (obinutuzumab)-induced antibody-dependent cellular cytotoxicity.J. Immunol. 2014; 192: 5618-5624Crossref PubMed Scopus (0) Google Scholar Functional NK cells for immunotherapy can be derived from several different sources, as demonstrated by a number of groups.6Locatelli F. Moretta F. Brescia L. Merli P. Natural killer cells in the treatment of high-risk leukemia.Semin. Immunol. 2014; 26: 173-179Crossref PubMed Scopus (0) Google Scholar, 7Farag S.S. Caligiuri M.A. Huma
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神说应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
CWNU_HAN应助科研通管家采纳,获得30
4秒前
大个应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
神说应助科研通管家采纳,获得10
5秒前
荣冥幽应助科研通管家采纳,获得10
5秒前
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
神说应助科研通管家采纳,获得10
5秒前
5秒前
HY完成签到,获得积分10
6秒前
6秒前
7秒前
佳佳完成签到,获得积分20
7秒前
pluto应助我的的小猪会飞采纳,获得10
9秒前
cs完成签到,获得积分10
9秒前
哈比人linling完成签到,获得积分10
10秒前
ommphey完成签到 ,获得积分10
11秒前
12秒前
韩hqf发布了新的文献求助10
12秒前
cs发布了新的文献求助10
14秒前
霍师傅发布了新的文献求助10
15秒前
Shoujiang完成签到 ,获得积分10
17秒前
18秒前
19秒前
小高同学发布了新的文献求助10
21秒前
朴实幼荷完成签到,获得积分10
21秒前
依古比古完成签到 ,获得积分10
22秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778030
求助须知:如何正确求助?哪些是违规求助? 3323705
关于积分的说明 10215513
捐赠科研通 3038914
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339