1H NMR–based metabolic profiling of serum for the detection of pancreatic cancer.

代谢物 代谢组学 逻辑回归 胰腺癌 医学 线性判别分析 主成分分析 多元分析 偏最小二乘回归 内科学 癌症 肿瘤科 生物信息学 人工智能 生物 统计 数学 计算机科学
作者
Kwadwo Owusu-Sarfo,Vincent M. Asiago,Nagana Gowda,Narasimhamurthy Shanaiah,Bowei Xi,E. Gabriela Chiorean,Daniel Raftery
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:29 (4_suppl): 193-193 被引量:1
标识
DOI:10.1200/jco.2011.29.4_suppl.193
摘要

193 Background: Pancreatic cancer (PC) is one of the leading causes of cancer deaths with a 5-yr mortality rate of 95%, and the lack of a suitable early detection method contributes to its poor prognosis. Metabolomics, the analysis of the metabolic profiles in biological samples such as serum and urine is emerging as an important tool to complement other “omic” techniques. In an effort to identify potential biomarkers for PC, we analyzed serum from PC patients (pts) focusing on altered metabolic profiles using 1 H nuclear magnetic resonance (NMR). Methods: The metabolite profiles from serum samples consisting of 55 PC pts and 32 healthy controls were analyzed using NMR combined with advanced supervised and unsupervised multivariate statistical methods such as partial least squares discriminant analysis (PLSDA) and principal component analysis (PCA). A number of metabolite markers selected based on p values and logistic regression rank the importance of each potential marker. Statistically significant metabolites between cancer and controls were used to build a prediction model. Results: Based on multivariate logistic regression analysis of 20 targeted metabolites, 10 metabolite markers were selected from the variable selection process and used to build a regression model with high accuracy (AUROC >0.99), a sensitivity of 95% and specificity of 95% using a training set of samples. When the model was tested on an independent set of patient samples, it yielded a sensitivity of 95% and a specificity of 100% (AUROC >0.98). Box and whisker plots for individual markers verified the high performance of all 10 markers. Conclusions: The high sensitivity of the metabolic profile that distinguishes PC pts from controls indicates the potential utility of 1 H NMR metabolic profiling for the early detection of PC. The investigation has identified perturbations in several pathways such as glycolysis and amino acid metabolism, highlighting their contribution to disease onset. This study demonstrates the potential of metabolite profiling as an important tool toward detecting PC development. Future studies will involve metabolite validation on high risk pts, and additional mass spectrometry based metabolic discovery efforts. No significant financial relationships to disclose.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
drtheo发布了新的文献求助20
刚刚
Axs发布了新的文献求助30
1秒前
hxh完成签到 ,获得积分10
1秒前
yyy完成签到,获得积分10
1秒前
豆豆啊发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
一期一完成签到,获得积分10
5秒前
FB完成签到,获得积分10
6秒前
挖井的人完成签到,获得积分10
6秒前
wushuang完成签到,获得积分10
6秒前
7秒前
落寞鱼关注了科研通微信公众号
8秒前
8秒前
Shirley发布了新的文献求助10
8秒前
拥挤而独行完成签到,获得积分10
8秒前
华仔应助222采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
坦率的匪完成签到,获得积分0
8秒前
9秒前
翻译度完成签到,获得积分10
9秒前
lkkkkk完成签到,获得积分10
10秒前
火星上碧完成签到,获得积分10
11秒前
11秒前
JamesPei应助drtheo采纳,获得20
11秒前
12秒前
抉择发布了新的文献求助10
13秒前
qq发布了新的文献求助20
14秒前
14秒前
15秒前
15秒前
lyy完成签到,获得积分10
15秒前
地学韦丰吉司长完成签到,获得积分10
15秒前
琳666完成签到,获得积分10
15秒前
15秒前
17秒前
孤独悟空完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4138820
求助须知:如何正确求助?哪些是违规求助? 3675641
关于积分的说明 11618965
捐赠科研通 3369890
什么是DOI,文献DOI怎么找? 1851114
邀请新用户注册赠送积分活动 914339
科研通“疑难数据库(出版商)”最低求助积分说明 829187