姜黄素
PI3K/AKT/mTOR通路
癌细胞
蛋白激酶B
药理学
乳腺癌
细胞凋亡
介孔二氧化硅
化学
癌症
癌症研究
医学
生物化学
内科学
介孔材料
催化作用
作者
Jiao Wang,Yue Wang,Qiang Liu,Linnan Yang,Rongrong Zhu,Chengzhong Yu,Shilong Wang
标识
DOI:10.1021/acsami.6b08400
摘要
Breast cancer is the primary reason for cancer-related death in women worldwide and the development of new formulations to treat breast cancer patients is crucial. Curcumin (Cur), a natural product, exerts promising anticancer activities against various cancer types. However, its therapeutic efficacy is hindered as a result of poor water solubility, instability, and low bioavailability. The aim of this work is to assess the curative effect of a novel nanoformulation, i.e., Cur-loaded and calcium-doped dendritic mesoporous silica nanoparticles modified with folic acid (Cur-Ca@DMSNs-FA) for breast cancer therapy. The results manifested that Cur-Ca@DMSNs-FA dispersed very well in aqueous solution, released Cur with a pH-responsible profile, and targeted efficiently to human breast cancer MCF-7 cells. Further investigations indicated that Cur-Ca@DMSNs-FA effectively inhibited cell proliferation, increased intracellular ROS generation, decreased mitochondrial membrane potential, and enhanced cell cycle retardation at G2/M phase, leading to a higher apoptosis rate in MCF-7 compared to free Cur. Moreover, the Western blotting analysis demonstrated that Cur-Ca@DMSNs-FA were more active than free Cur through suppression of PI3K/AKT/mTOR and Wnt/β-catenin signaling, and activation of the mitochondria-mediated apoptosis pathway. In addition, hemolysis assay showed that the Ca@DMSNs-FA exhibited good biocompatibility. Last, in vivo studies indicated that when Cur was encapsulated in Ca@DMSNs-FA, the Cur concentration in blood serum and tumor tissues was increased after 1 h intraperitoneal injection. In conclusion, Cur-Ca@DMSNs-FA might act as a potential anticancer drug formulation for breast cancer therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI