Identification of gas mixtures via sensor array combining with neural networks

湿度 人工神经网络 卷积神经网络 传感器阵列 模式识别(心理学) 计算机科学 反向传播 人工智能 生物系统 机器学习 生物 热力学 物理
作者
Jifeng Chu,Weijuan Li,Xu Yang,Yue Wu,Dawei Wang,Aijun Yang,Huan Yuan,Xiaohua Wang,Yunjia Li,Mingzhe Rong
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:329: 129090-129090 被引量:173
标识
DOI:10.1016/j.snb.2020.129090
摘要

In this work, a sensor array comprised four sensors has been employed to detect 11 types of mixtures of nitrogen dioxide (NO2) and carbon monoxide (CO), with concentration varying from 0 to 50 ppm. To reduce the effect of sensor noise and ensure high recognition accuracy, average resistance over a period of time was introduced. Then, 12 features including response value, response time and recovery time were extracted from each sample. After that, C-means clustering and back propagation neural network (BPNN) were performed to identify various gases, with classification accuracy of 94.55 % and 100 %, respectively. Genetic algorithm (GA) was also employed to further improve BPNN’s performance. Moreover, a random variable substitution method has been introduced to study which feature of the input sample influence the BPNN model most. Through gray processing, dynamic curves have been transformed into gray images, from which convolutional neural network (CNN) was introduced to automatically extract high-level features, and an identification accuracy of 100 % has been realized. Finally, experiments for sensing gas mixtures of CO and NO2 under various humidity levels have been done to test the impact of humidity on the sensor array. The results demonstrated the proposed method could eliminate the effects of humidity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xqxq发布了新的文献求助10
2秒前
充电宝应助zc采纳,获得10
2秒前
正在通话中完成签到,获得积分10
2秒前
不安愚志完成签到 ,获得积分10
4秒前
翻似烂柯人完成签到,获得积分10
4秒前
5秒前
慕青应助半城烟火采纳,获得10
5秒前
5秒前
5秒前
大气菠萝发布了新的文献求助10
6秒前
古月完成签到,获得积分10
6秒前
彩色枫关注了科研通微信公众号
7秒前
7秒前
Hello应助暮商零七采纳,获得10
9秒前
烟花应助暮商零七采纳,获得10
9秒前
完美世界应助暮商零七采纳,获得10
9秒前
深情安青应助暮商零七采纳,获得10
9秒前
桐桐应助暮商零七采纳,获得10
9秒前
英吉利25发布了新的文献求助10
9秒前
可爱的函函应助暮商零七采纳,获得10
9秒前
nuaa_shy应助猪猪hero采纳,获得10
9秒前
10秒前
科研通AI6.1应助Krystal采纳,获得10
10秒前
11秒前
XHW完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
x94264482应助Faded采纳,获得10
12秒前
12秒前
北极星发布了新的文献求助10
12秒前
直率的钢铁侠完成签到 ,获得积分10
13秒前
笨叉叉发布了新的文献求助30
13秒前
13秒前
15秒前
16秒前
luochen完成签到,获得积分0
16秒前
17秒前
uraylong发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735237
求助须知:如何正确求助?哪些是违规求助? 5359154
关于积分的说明 15328898
捐赠科研通 4879502
什么是DOI,文献DOI怎么找? 2622007
邀请新用户注册赠送积分活动 1571188
关于科研通互助平台的介绍 1527971