Simultaneous Quantification of 38 Psychotropic Drugs and Relevant Metabolites in Blood using LC-MS-MS.

治疗药物监测 代谢物 液相色谱-质谱法 法医毒理学 药代动力学 气相色谱-质谱法 选择性反应监测 固相萃取 药理学 尿 奥卡西泮 药品 高效液相色谱法 定量分析(化学) 蛋白质沉淀 样品制备
作者
Rongzhe Zhu,Xiaoru Dong,Dingang Zhang,Xiaochen Liu,Yonghong Ye,Yan Jiang
出处
期刊:Journal of Analytical Toxicology [Oxford University Press]
卷期号:45 (4): 397-409 被引量:3
标识
DOI:10.1093/jat/bkaa085
摘要

The trend for the concomitant prescription of antidepressants and antipsychotics is increasing. This calls for a veracious screening and quantifying method for forensic and clinical use. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed and validated for the simultaneous determination and quantification of 38 antidepressants, antipsychotics and relevant metabolites in small volumes (200 μL) of human whole blood. Analytes and deuterated internal standards were extracted using liquid-liquid extraction. The separation, determination and quantification of the analytes were performed using an LC-MS-MS system equipped with an ACQUITY UPLC® BEH Phenyl Column under a positive electrospray ionization mode. After validation, the analytical procedure was proved to be highly sensitive, with a limit of detection ranging from 0.0005 to 1 ng/mL and a lower limit of quantification ranging from 0.002 to 2 ng/mL. Bias and within- and between-run precision were within 14.7% for all analytes. Recoveries were reproducible and those of 35 analytes were >50%. Dilution integrity was evaluated to ensure that the therapeutic and toxic blood concentration ranges of target compounds were fully covered. Finally, this method was applied to authentic whole blood samples collected from two forensic cases, which demonstrated its practical usefulness of providing accurate and comprehensive information concerning the previous medication of the deceased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助mouse采纳,获得10
1秒前
马龙发布了新的文献求助10
2秒前
烁丶完成签到 ,获得积分10
2秒前
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
5秒前
羊_应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
FashionBoy应助生科爱好者采纳,获得10
6秒前
6秒前
6秒前
方方完成签到,获得积分10
7秒前
yyyt完成签到,获得积分10
8秒前
酷波er应助ebby采纳,获得10
8秒前
8秒前
宁静致远完成签到,获得积分10
9秒前
12138完成签到,获得积分20
9秒前
专注钢笔完成签到 ,获得积分10
10秒前
敏感初露发布了新的文献求助10
10秒前
狼主发布了新的文献求助10
12秒前
16秒前
西窗烛完成签到,获得积分20
16秒前
17秒前
Lucas应助小潘不潘采纳,获得10
18秒前
852应助小红采纳,获得10
18秒前
善学以致用应助wawaeryu采纳,获得10
18秒前
19秒前
20秒前
zz发布了新的文献求助10
20秒前
Ding发布了新的文献求助10
21秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832915
求助须知:如何正确求助?哪些是违规求助? 3375336
关于积分的说明 10488703
捐赠科研通 3094953
什么是DOI,文献DOI怎么找? 1704149
邀请新用户注册赠送积分活动 819814
科研通“疑难数据库(出版商)”最低求助积分说明 771661