马赫数
空气动力学
涡轮机
机械
涡流
计算流体力学
泄漏(经济)
级联
攻角
材料科学
几何学
工程类
航空航天工程
物理
数学
化学工程
宏观经济学
经济
摘要
Abstract Variable geometry turbines for marine gas turbines typically use variable vane technology to regulate turbine performance under variable operating conditions, but the variable geometry turbine produces additional losses as compared to the fixed geometry turbine. The method of combining experiment and numerical calculations was adopted to investigating the variable vane tip leakage loss at different vane turning angles, and its influence on the vane aerodynamic characteristics. The numerical calculations were performed using the ANSYS CFX 18.0 numerical prediction code, adopting the SST k-ω turbulence model to investigate the aerodynamic parameter distribution downstream of the variable vane under five different vane turning angles (−6°, −3°, 0°, +5° and +10°) and three different Mach Numbers (0.3, 0.5 and 0.6). The results showed that the tip leakage is the main source of aerodynamic loss of variable vanes. The tip leakage vortex and passage vortex show strong mixing characteristics in the downstream of variable vanes, especially at the 0.3Mach condition. The change of the vane turning angle alters not only the incidence angle to the vane itself, but also the outflow angle downstream of the vane. There is a linear relationship between the downstream outflow angle and the turning angle of the vane. The total pressure loss coefficient and energy loss coefficient decrease as the Mach number increases, and the changes of energy loss coefficient value from 0.3Mach to 0.5Mach are most obvious. Results from this investigation are well presented and discussed in this paper.
科研通智能强力驱动
Strongly Powered by AbleSci AI