Research on the quantitative inversion model of heavy metals in soda saline land based on visible-near-infrared spectroscopy

相关系数 分析化学(期刊) 碱金属 材料科学 光谱学 反演(地质) 矿物学 化学 地质学 物理 统计 数学 环境化学 冶金 构造盆地 古生物学 有机化学 量子力学
作者
Yachun Mao,Jing Liu,Wang Cao,Ruibo Ding,Yanhua Fu,Zhanguo Zhao
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:112: 103602-103602 被引量:21
标识
DOI:10.1016/j.infrared.2020.103602
摘要

With saline-alkali land in Zhenlai County, Baicheng city, Jilin Province, China as the research object, a quantitative inversion model for the heavy metal content of manganese (Mn), cobalt (Co) and iron (Fe) in saline-alkali soil and the visible-near-infrared spectroscopy data were established. First, Savitzky-Golay (SG) smoothing, multivariate scattering correction (MSC), continuum removal (CR), and combined transformation methods were performed on the original spectral data. By analysing the correlation between processed data and heavy metal content, the characteristic bands corresponding to different spectral transformations were extracted. Next, the ratio index (RI), difference index (DI) and normalized difference index (NDI) were constructed, and the spectral index was determined to have the most significant correlation with the combination of Mn-, Co- and Fe-content-sensitive bands and its corresponding Spearman rank correlation coefficient. Finally, a quantitative inversion model for the heavy metal content (Mn, Co and Fe) in soda saline-alkali land was established, and its accuracy was verified. The research results show that the optimal band selection principle for the quantitative inversion model of heavy metals in soda saline-alkali land is as follows: Mn selected 219 groups of sensitive bands with correlation coefficient r > 0.70, Co selected 1377 groups of sensitive bands with correlation coefficient r > 0.80, and Fe selected 104 groups of sensitive bands with correlation coefficient r > 0.80. Based on these selection principles, the random forest algorithm was used to perform an inversion for the Mn, Co and Fe contents with the best results, the goodness of fit (R2) values between predicted and measured values were 0.76, 0.92 and 0.91, and the mean relative accuracy was 91.75%, 92.45% and 93.90%, respectively. This method has improved prediction accuracy of the Mn, Co and Fe contents in saline-alkali land.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心谷秋完成签到,获得积分10
1秒前
踏实奇异果完成签到,获得积分10
2秒前
GGZ完成签到,获得积分10
2秒前
钱罐罐完成签到 ,获得积分10
3秒前
子小亮发布了新的文献求助10
5秒前
科研通AI2S应助大笨蛋采纳,获得10
5秒前
烂漫的紫槐完成签到,获得积分10
5秒前
虚拟莫茗完成签到 ,获得积分10
6秒前
罗氏集团完成签到,获得积分10
6秒前
6秒前
希望天下0贩的0应助pokyo采纳,获得10
7秒前
Lucas应助zhang采纳,获得10
7秒前
小恐龙飞飞完成签到 ,获得积分10
8秒前
科研通AI2S应助博修采纳,获得10
9秒前
wendy_1006完成签到,获得积分10
9秒前
Aries完成签到,获得积分10
9秒前
大笨蛋完成签到,获得积分10
11秒前
耿教授发布了新的文献求助10
11秒前
fuyuan完成签到,获得积分10
12秒前
斑点完成签到,获得积分10
12秒前
波比不菜完成签到,获得积分10
12秒前
12秒前
坚强的元瑶完成签到,获得积分10
13秒前
jjlyy完成签到,获得积分10
14秒前
念梦完成签到,获得积分10
14秒前
小黑马发布了新的文献求助10
16秒前
16秒前
17秒前
小蘑菇应助大笨蛋采纳,获得10
19秒前
华仔应助老北京采纳,获得10
20秒前
香蕉觅云应助老北京采纳,获得10
20秒前
CodeCraft应助老北京采纳,获得10
20秒前
20秒前
SciGPT应助老北京采纳,获得10
20秒前
科研通AI2S应助老北京采纳,获得10
20秒前
111应助老北京采纳,获得10
20秒前
核桃应助老北京采纳,获得10
20秒前
科研通AI2S应助老北京采纳,获得10
20秒前
zhang发布了新的文献求助10
22秒前
不安凝梦应助钱罐罐采纳,获得10
24秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902087
求助须知:如何正确求助?哪些是违规求助? 3446737
关于积分的说明 10845753
捐赠科研通 3171967
什么是DOI,文献DOI怎么找? 1752525
邀请新用户注册赠送积分活动 847297
科研通“疑难数据库(出版商)”最低求助积分说明 789871