Recent Advances in Mechanism of AIE Mechanochromic Materials

分子内力 材料科学 分子间力 静水压力 纳米技术 机制(生物学) 聚集诱导发射 化学物理 化学 分子 光学 有机化学 热力学 哲学 物理 认识论 荧光
作者
Lipeng Wang,Leijing Liu,Bin Xu,Wenjing Tian
出处
期刊:Chemical Research in Chinese Universities [Springer Nature]
卷期号:37 (1): 100-109 被引量:45
标识
DOI:10.1007/s40242-021-0431-0
摘要

Organic mechanochromic materials(also known as piezochromic materials), whose color or emission changes under mechanical force, have attracted great interest owing to their potential applications in pressure sensors, rewritable materials, optical storage, and security ink. Organic mechanochromic materials with aggregation-induced emission(AIE) features have better development prospects and research value owing to their excellent optical properties. To date, mechanochromism has mostly been realized by means of mechanical grinding. Nevertheless, the magnitude of the grinding force is usually uncontrollable and its direction is anisotropic, making it awkward to study the mechanism of mechanochromic materials. On the contrary, hydrostatic pressure, whose magnitude and direction are controllable, is a more valid and governable method to investigate the mechanism of mechanochromic materials, which can help us to construct a meaningful structure-property relationship and understand the latent origin of the mechanochromism. Furthermore, it is conducive to developing other mechanochromic material systems with desired chemical and physical properties. In this review, we focus on the recent progress in the mechanism of organic mechanochromic materials with AIE features under hydrostatic pressure. Four types of mechanisms are included: intermolecular interaction change, intramolecular conformation change, transformation from locally excited state to intramolecular charge-transfer state, and intra- and inter-molecular effects induced by hydrostatic pressure, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈欣瑶发布了新的文献求助10
刚刚
congconglyu完成签到,获得积分10
刚刚
星辰大海应助0Miles采纳,获得10
刚刚
无私的丹完成签到,获得积分10
刚刚
1秒前
JoaquinH发布了新的文献求助10
1秒前
拼搏凝蕊完成签到,获得积分10
1秒前
1秒前
2秒前
bc发布了新的文献求助10
2秒前
3秒前
狂野的灭男关注了科研通微信公众号
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
细腻荔枝完成签到 ,获得积分10
5秒前
liu发布了新的文献求助10
6秒前
6秒前
6秒前
snow发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
大个应助斯文的翠阳采纳,获得10
8秒前
Shuai发布了新的文献求助10
8秒前
8秒前
puzhongjiMiQ发布了新的文献求助200
8秒前
fafachoi发布了新的文献求助30
9秒前
AKKKK发布了新的文献求助10
9秒前
宋宋发布了新的文献求助10
9秒前
冰火菠萝包完成签到,获得积分10
10秒前
10秒前
10秒前
吴漾完成签到,获得积分10
10秒前
怡然飞槐发布了新的文献求助10
11秒前
qqy完成签到,获得积分10
12秒前
Quhang发布了新的文献求助10
12秒前
王柯发布了新的文献求助10
13秒前
拼搏凝蕊发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647599
求助须知:如何正确求助?哪些是违规求助? 4773824
关于积分的说明 15040250
捐赠科研通 4806401
什么是DOI,文献DOI怎么找? 2570250
邀请新用户注册赠送积分活动 1527084
关于科研通互助平台的介绍 1486162