Comparing the efficiency of defect depth characterization algorithms in the inspection of CFRP by using one-sided pulsed thermal NDT

无损检测 热成像 材料科学 噪音(视频) 表征(材料科学) 信号(编程语言) 算法 热的 计算机科学 相(物质) 声学 信号处理 光学 人工智能 红外线的 图像(数学) 数字信号处理 物理 量子力学 气象学 纳米技术 程序设计语言 计算机硬件
作者
Alexey Moskovchenko,В. П. Вавилов,А. О. Чулков
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:107: 103289-103289 被引量:11
标识
DOI:10.1016/j.infrared.2020.103289
摘要

The efficiency of eight algorithms of defect depth characterization (pulse phase thermography – PPT, thermographic signal reconstruction by analyzing the first and second derivatives– TSR, early observation – EO, apparent thermal inertia – ATI, thermal quadrupoles - TQ, non-linear fitting - NLF and neural networks – NN) has been comparatively analyzed on both theoretical and experimental IR image sequences obtained in the inspection of CFRP composite. Synthetic noise-free image sequences have been calculated by means of the ThermoCalc-3D software, while experimental results have been obtained by applying a one-sided procedure of pulsed thermal NDT to the inspection of artificial defects in CFRP. A relative error in the evaluation of defect depth has been chosen as a figure of merit. It has been demonstrated that a simple and robust processing technique is the use of the Fourier transform resulting in phase-domain data (PPT). The technique of TSR ensures maximal values of signal-to-noise ratio and is less susceptible to uneven heating and lateral heat diffusion. The calculation of ATI has allowed the characterization of defects at depths up to 1.5 mm, but it is sensitive to uneven heating thus requiring to carefully choose a non-defect area. The EO method, as well as the technique of TQ, have revealed inferior results in defect depth identification because of a noisy character of raw signals. Non-linear fitting is a convenient processing technique allowing simultaneous characterization of some test parameters, such as material thermal properties, defect depth and thickness, etc., but this technique is time-consuming and can hardly be applied to full-format images. In the whole defect depth range, minimal characterization errors have been ensured by the use of the NN that is a promising tool for automated identification of hidden defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助夏爽2023采纳,获得40
1秒前
张继妖发布了新的文献求助30
1秒前
2秒前
SciGPT应助乐观小之采纳,获得10
3秒前
是她推了熹娘娘完成签到,获得积分10
3秒前
6秒前
6秒前
7秒前
7秒前
8秒前
撒大苏打发布了新的文献求助10
10秒前
木光完成签到,获得积分10
11秒前
张继妖完成签到,获得积分10
11秒前
hyh发布了新的文献求助10
12秒前
ZhouLu发布了新的文献求助10
12秒前
含糊的凝芙完成签到,获得积分10
12秒前
xiekunwhy完成签到,获得积分10
12秒前
12秒前
13秒前
lkl完成签到 ,获得积分10
14秒前
乐观小之发布了新的文献求助10
15秒前
罗先生完成签到,获得积分10
16秒前
jjjkkk777完成签到,获得积分10
17秒前
李健应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
daidai发布了新的文献求助10
18秒前
HEIKU应助科研通管家采纳,获得10
18秒前
qiao应助科研通管家采纳,获得10
18秒前
qiao应助科研通管家采纳,获得10
19秒前
qiao应助科研通管家采纳,获得10
19秒前
HEIKU应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
19秒前
HEIKU应助科研通管家采纳,获得10
19秒前
19秒前
一生所爱完成签到,获得积分10
22秒前
23秒前
无花果应助MingqingFang采纳,获得10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780330
求助须知:如何正确求助?哪些是违规求助? 3325604
关于积分的说明 10223724
捐赠科研通 3040799
什么是DOI,文献DOI怎么找? 1669004
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648