One-step green and scalable dry synthesis of nitrogen-doped graphene-encapsulated Fe3O4 nanoparticles as high-performance supercapacitor electrode

超级电容器 石墨烯 材料科学 电容 电极 电化学 纳米颗粒 化学工程 纳米技术 氧化物 热解 电流密度 化学 冶金 物理化学 工程类 物理 量子力学
作者
Siyu Su,Liuqin Lai,Rui Wang,Liang Zhang,Yifan Cui,Rong Li,Naili Guo,Wei Shi,Xiaohong Zhu
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:834: 154477-154477 被引量:16
标识
DOI:10.1016/j.jallcom.2020.154477
摘要

Advanced electrode materials are of vital importance to the application of high-performance supercapacitors. However, most of the electrode materials are limited by their low specific capacitance and/or poor cycling stability. In this work, nitrogen-doped graphene-encapsulated Fe3O4 nanoparticles (Fe3O4@NG) were synthesized through a simple one-step green and scalable dry pyrolysis method, in which the uniform growth of Fe3O4 nanoparticles with a diameter of about 30–60 nm, the reduction of graphene oxide (GO), and the introduction of nitrogen atoms on graphene could be achieved simultaneously. The structure, composition, and electrochemical performance of the Fe3O4@NG samples were systematically characterized. Compared to pristine Fe3O4, Fe3O4@NG showed superior electrochemical performances, including an ultra-high specific capacitance of up to 740 F g−1 at the current density of 1 A g−1, a greatly improved rate capability of 56.8% with the increase in current density from 1 to 20 A g−1, and an excellent cycling stability with the retention ratio of 90.9% after 3000 cycles. Furthermore, after being placed in the external environment for one year, the specific capacitance retention of Fe3O4@NG could be as high as 98%, proving again that the as-prepared Fe3O4@NG exhibited perfect structural stability and excellent stable electrochemical properties. All of the results demonstrate an extraordinary performance of Fe3O4@NG, thus being potential for future practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昭昭炙热完成签到 ,获得积分10
1秒前
Naomi完成签到,获得积分10
2秒前
Bailei_Shi发布了新的文献求助50
2秒前
2秒前
3秒前
3秒前
4秒前
HuY完成签到 ,获得积分10
8秒前
8秒前
8秒前
高高诗柳发布了新的文献求助10
8秒前
SharoN发布了新的文献求助10
8秒前
9秒前
欧阳静芙完成签到,获得积分10
10秒前
10秒前
11秒前
wanci应助科研通管家采纳,获得10
13秒前
云遮月应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
云遮月应助科研通管家采纳,获得10
13秒前
充电宝应助ZhouJing采纳,获得10
13秒前
MchemG应助科研通管家采纳,获得20
13秒前
sleepingfish应助科研通管家采纳,获得20
13秒前
MchemG应助科研通管家采纳,获得20
13秒前
慕青应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
zwj发布了新的文献求助50
14秒前
搜集达人应助不倒翁37采纳,获得10
14秒前
14秒前
科研通AI5应助高高诗柳采纳,获得10
15秒前
zzyytt完成签到,获得积分10
15秒前
Yoo完成签到 ,获得积分10
15秒前
54发布了新的文献求助10
17秒前
18秒前
Hello应助AMLYB666采纳,获得10
19秒前
曾经的真发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941061
求助须知:如何正确求助?哪些是违规求助? 4207141
关于积分的说明 13076618
捐赠科研通 3985902
什么是DOI,文献DOI怎么找? 2182363
邀请新用户注册赠送积分活动 1197920
关于科研通互助平台的介绍 1110256