Genome‐enabled prediction of reproductive traits in Nellore cattle using parametric models and machine learning methods

生物 最佳线性无偏预测 遗传力 随机森林 人工授精 统计 支持向量机 肉牛 遗传相关 回归 相关性 冰崩解 人工智能 选择(遗传算法) 数学 动物科学 遗传学 计算机科学 遗传变异 怀孕 基因 哺乳期 几何学
作者
Anderson Luís Alves,Rafael Espigolan,Tiago Bresolin,Rebeka Magalhães da Costa,Gerardo Alves Fernandes Júnior,Ricardo Vieira Ventura,Roberto Carvalheiro,Lúcia Galvão de Albuquerque
出处
期刊:Animal Genetics [Wiley]
卷期号:52 (1): 32-46 被引量:10
标识
DOI:10.1111/age.13021
摘要

Summary This study aimed to assess the predictive ability of different machine learning (ML) methods for genomic prediction of reproductive traits in Nellore cattle. The studied traits were age at first calving (AFC), scrotal circumference (SC), early pregnancy (EP) and stayability (STAY). The numbers of genotyped animals and SNP markers available were 2342 and 321 419 (AFC), 4671 and 309 486 (SC), 2681 and 319 619 (STAY) and 3356 and 319 108 (EP). Predictive ability of support vector regression (SVR), Bayesian regularized artificial neural network (BRANN) and random forest (RF) were compared with results obtained using parametric models (genomic best linear unbiased predictor, GBLUP, and Bayesian least absolute shrinkage and selection operator, BLASSO). A 5‐fold cross‐validation strategy was performed and the average prediction accuracy (ACC) and mean squared errors (MSE) were computed. The ACC was defined as the linear correlation between predicted and observed breeding values for categorical traits (EP and STAY) and as the correlation between predicted and observed adjusted phenotypes divided by the square root of the estimated heritability for continuous traits (AFC and SC). The average ACC varied from low to moderate depending on the trait and model under consideration, ranging between 0.56 and 0.63 (AFC), 0.27 and 0.36 (SC), 0.57 and 0.67 (EP), and 0.52 and 0.62 (STAY). SVR provided slightly better accuracies than the parametric models for all traits, increasing the prediction accuracy for AFC to around 6.3 and 4.8% compared with GBLUP and BLASSO respectively. Likewise, there was an increase of 8.3% for SC, 4.5% for EP and 4.8% for STAY, comparing SVR with both GBLUP and BLASSO. In contrast, the RF and BRANN did not present competitive predictive ability compared with the parametric models. The results indicate that SVR is a suitable method for genome‐enabled prediction of reproductive traits in Nellore cattle. Further, the optimal kernel bandwidth parameter in the SVR model was trait‐dependent, thus, a fine‐tuning for this hyper‐parameter in the training phase is crucial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内坻崿完成签到,获得积分10
刚刚
sudaxia100发布了新的文献求助30
2秒前
6秒前
奔波霸完成签到,获得积分10
9秒前
Kong完成签到,获得积分10
10秒前
123发布了新的文献求助10
10秒前
14秒前
cywzhcr完成签到,获得积分10
16秒前
18秒前
科研顺利完成签到,获得积分10
19秒前
曹伟给曹伟的求助进行了留言
19秒前
19秒前
coco发布了新的文献求助10
21秒前
acihk完成签到,获得积分10
21秒前
123完成签到,获得积分20
22秒前
acihk发布了新的文献求助10
24秒前
25秒前
个性海秋发布了新的文献求助30
26秒前
搜集达人应助acihk采纳,获得10
29秒前
6115发布了新的文献求助10
29秒前
小熊发布了新的文献求助10
37秒前
41秒前
爆米花应助祯果粒采纳,获得10
42秒前
科研通AI5应助migratorybird采纳,获得10
42秒前
43秒前
44秒前
完美世界应助伊雪儿采纳,获得10
45秒前
45秒前
老北京发布了新的文献求助10
46秒前
47秒前
48秒前
年鱼精完成签到 ,获得积分10
48秒前
老北京发布了新的文献求助10
52秒前
52秒前
老北京发布了新的文献求助10
52秒前
52秒前
gege完成签到,获得积分10
53秒前
53秒前
老北京发布了新的文献求助10
54秒前
卡尔拉完成签到,获得积分10
55秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800316
求助须知:如何正确求助?哪些是违规求助? 3345625
关于积分的说明 10325949
捐赠科研通 3062064
什么是DOI,文献DOI怎么找? 1680775
邀请新用户注册赠送积分活动 807242
科研通“疑难数据库(出版商)”最低求助积分说明 763557