已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Synthetic CT Generation Based on T2 Weighted MRI of Nasopharyngeal Carcinoma (NPC) Using a Deep Convolutional Neural Network (DCNN).

卷积神经网络 计算机科学 深度学习 人工智能 模式识别(心理学) 分割 人工神经网络
作者
Yuenan Wang,Chenbin Liu,Xiao Zhang,Weiwei Deng
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:9: 1333-1333 被引量:22
标识
DOI:10.3389/fonc.2019.01333
摘要

Purpose: There is an emerging interest of applying magnetic resonance imaging (MRI) to radiotherapy (RT) due to its superior soft tissue contrast for accurate target delineation as well as functional information for evaluating treatment response. MRI-based RT planning has great potential to enable dose escalation to tumors while reducing toxicities to surrounding normal tissues in RT treatments of nasopharyngeal carcinoma (NPC). Our study aims to generate synthetic CT from T2-weighted MRI using a deep learning algorithm. Methods: Thirty-three NPC patients were retrospectively selected for this study with local IRB's approval. All patients underwent clinical CT simulation and 1.5T MRI within the same week in our hospital. Prior to CT/MRI image registration, we had to normalize two different modalities to a similar intensity scale using the histogram matching method. Then CT and T2 weighted MRI were rigidly and deformably registered using intensity-based registration toolbox elastix (version 4.9). A U-net deep learning algorithm with 23 convolutional layers was developed to generate synthetic CT (sCT) using 23 NPC patients' images as the training set. The rest 10 NPC patients were used as the test set (~1/3 of all datasets). Mean absolute error (MAE) and mean error (ME) were calculated to evaluate HU differences between true CT and sCT in bone, soft tissue and overall region. Results: The proposed U-net algorithm was able to create sCT based on T2-weighted MRI in NPC patients, which took 7 s per patient on average. Compared to true CT, MAE of sCT in all tested patients was 97 ± 13 Hounsfield Unit (HU) in soft tissue, 131 ± 24 HU in overall region, and 357 ± 44 HU in bone, respectively. ME was -48 ± 10 HU in soft tissue, -6 ± 13 HU in overall region, and 247 ± 44 HU in bone, respectively. The majority soft tissue and bone region was reconstructed accurately except the interface between soft tissue and bone and some delicate structures in nasal cavity, where the inaccuracy was induced by imperfect deformable registration. One patient example was shown with almost no difference in dose distribution using true CT vs. sCT in the PTV regions in the sinus area with fine bone structures. Conclusion: Our study indicates that it is feasible to generate high quality sCT images based on T2-weighted MRI using the deep learning algorithm in patients with nasopharyngeal carcinoma, which may have great clinical potential for MRI-only treatment planning in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助你好吗采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
pjxxx完成签到 ,获得积分10
2秒前
2秒前
科研通AI5应助皮灵犀采纳,获得10
4秒前
8秒前
9秒前
10秒前
冰魂应助llk采纳,获得50
10秒前
10秒前
彩色德天完成签到 ,获得积分10
11秒前
花生壳发布了新的文献求助10
11秒前
852应助齐桉采纳,获得10
13秒前
Jasper应助purplelight采纳,获得10
14秒前
天天快乐应助魏伯安采纳,获得10
14秒前
15秒前
15秒前
wzc发布了新的文献求助10
16秒前
皮灵犀发布了新的文献求助10
16秒前
17秒前
wanci应助chiyudawang采纳,获得10
19秒前
难过白易完成签到,获得积分20
21秒前
L77发布了新的文献求助10
21秒前
尊敬雨双发布了新的文献求助10
22秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
无奈的山雁完成签到,获得积分20
24秒前
25秒前
WeihaoLuo完成签到 ,获得积分10
27秒前
28秒前
28秒前
今后应助张三采纳,获得10
29秒前
Owen应助PJZou采纳,获得10
29秒前
chiyudawang发布了新的文献求助10
30秒前
30秒前
meihui完成签到 ,获得积分10
32秒前
35秒前
36秒前
36秒前
稳重的千凝完成签到,获得积分10
37秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885614
求助须知:如何正确求助?哪些是违规求助? 3427677
关于积分的说明 10756367
捐赠科研通 3152614
什么是DOI,文献DOI怎么找? 1740402
邀请新用户注册赠送积分活动 840237
科研通“疑难数据库(出版商)”最低求助积分说明 785254