拉曼散射
基质(水族馆)
再现性
材料科学
拉曼光谱
纳米柱
蚀刻(微加工)
纳米技术
孔雀绿
分析化学(期刊)
化学
吸附
光学
色谱法
纳米结构
地质学
物理
有机化学
海洋学
图层(电子)
作者
Agnieszka Kamińska,Igor Dzięcielewski,J.L. Weyher,Jacek Waluk,Sylwester Gawinkowski,Volodymyr Sashuk,Marcin Fiałkowski,Marta Sawicka,T. Suski,S. Porowski,Robert Hołyst
摘要
We fabricated a Surface Enhanced Raman Scattering (SERS)-active surface based on photo-etched and Au-coated GaN. The highest enhancement factor (EF) in SERS and high reproducibility of spectra were obtained from surfaces covered with bunched nanopillars which were produced by relatively long defect-selective photo-etching. The surfaces exhibited SERS enhancements of the order of 2.8 × 106 for malachite green isothiocyanate (MGITC) and 2 × 106 for p-mercaptobenzoic acid (PMBA). These SERS enhancement factors were comparable to those of conventional SERS substrates, while the EF for MGITC was two orders of magnitude larger than the corresponding one reported for the SERS platform made on porous GaN. The standard deviation of the relative intensity of the 1180 cm−1 mode of MGITC was less than 5% for 100 randomly distributed locations across a single platform and less than 10% between different platforms. The SERS signal of MGITC at our GaN/Au surface (kept under ambient conditions) was extremely stable. We could not detect any peak shift or appreciable change of intensity even after three months. We used these surfaces to detect biological molecules such as amino acids and bovine serum albumin (BSA) at low concentration and with short detection time. We developed simple and effective cleaning procedures for our substrates. After cleaning, the same substrate could be used multiple times retaining the SERS activity. We are not aware of any other multiply regenerated SERS substrate which provides simultaneously such high stability with high enhancement, good uniformity, and high reproducibility.
科研通智能强力驱动
Strongly Powered by AbleSci AI