Widely Targeted Metabolomics Based on Large-Scale MS/MS Data for Elucidating Metabolite Accumulation Patterns in Plants

代谢组学 代谢物 计算生物学 代谢物分析 串联质谱法 代谢组 三级四极质谱仪 选择性反应监测 化学 生物 质谱法 色谱法 生物化学
作者
Yuji Sawada,Kenji Akiyama,Akane Sakata,Ayuko Kuwahara,Hitomi Otsuki,Tetsuya Sakurai,Kazuki Saito,Masami Yokota Hirai
出处
期刊:Plant and Cell Physiology [Oxford University Press]
卷期号:50 (1): 37-47 被引量:280
标识
DOI:10.1093/pcp/pcn183
摘要

Metabolomics is an 'omics' approach that aims to analyze all metabolites in a biological sample comprehensively. The detailed metabolite profiling of thousands of plant samples has great potential for directly elucidating plant metabolic processes. However, both a comprehensive analysis and a high throughput are difficult to achieve at the same time due to the wide diversity of metabolites in plants. Here, we have established a novel and practical metabolomics methodology for quantifying hundreds of targeted metabolites in a high-throughput manner. Multiple reaction monitoring (MRM) using tandem quadrupole mass spectrometry (TQMS), which monitors both the specific precursor ions and product ions of each metabolite, is a standard technique in targeted metabolomics, as it enables high sensitivity, reproducibility and a broad dynamic range. In this study, we optimized the MRM conditions for specific compounds by performing automated flow injection analyses with TQMS. Based on a total of 61,920 spectra for 860 authentic compounds, the MRM conditions of 497 compounds were successfully optimized. These were applied to high-throughput automated analysis of biological samples using TQMS coupled with ultra performance liquid chromatography (UPLC). By this analysis, approximately 100 metabolites were quantified in each of 14 plant accessions from Brassicaceae, Gramineae and Fabaceae. A hierarchical cluster analysis based on the metabolite accumulation patterns clearly showed differences among the plant families, and family-specific metabolites could be predicted using a batch-learning self-organizing map analysis. Thus, the automated widely targeted metabolomics approach established here should pave the way for large-scale metabolite profiling and comparative metabolomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尖叫尖叫完成签到 ,获得积分10
1秒前
1秒前
1秒前
隐形曼青应助LiYJS采纳,获得10
2秒前
wang完成签到,获得积分20
3秒前
是瓜瓜不完成签到,获得积分10
3秒前
阿毛完成签到,获得积分10
4秒前
ramu完成签到,获得积分10
4秒前
科研通AI2S应助祝爽采纳,获得10
4秒前
彩色诗云完成签到 ,获得积分10
5秒前
bo发布了新的文献求助10
5秒前
orixero应助金文采纳,获得10
6秒前
王十二发布了新的文献求助10
6秒前
Hofury完成签到 ,获得积分10
6秒前
高大的羽毛完成签到,获得积分10
7秒前
kuyi完成签到 ,获得积分10
9秒前
星星又累发布了新的文献求助10
9秒前
今后应助晶晶采纳,获得10
9秒前
搁浅完成签到,获得积分20
10秒前
11秒前
logen发布了新的文献求助100
12秒前
kingwill应助一一采纳,获得20
13秒前
15秒前
ppat5012完成签到 ,获得积分10
16秒前
qingxinhuo完成签到 ,获得积分10
16秒前
芝士椰果完成签到,获得积分10
17秒前
花开四海完成签到 ,获得积分10
17秒前
17秒前
微笑襄完成签到 ,获得积分10
18秒前
abbyi完成签到,获得积分10
18秒前
19秒前
星星又累完成签到,获得积分10
19秒前
可爱的函函应助海孩子采纳,获得10
19秒前
Zhao发布了新的文献求助10
20秒前
叙余完成签到 ,获得积分10
20秒前
猎空发布了新的文献求助30
21秒前
由由完成签到 ,获得积分10
21秒前
mingming发布了新的文献求助10
22秒前
22秒前
晴空万里完成签到,获得积分10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798603
求助须知:如何正确求助?哪些是违规求助? 3344274
关于积分的说明 10319445
捐赠科研通 3060850
什么是DOI,文献DOI怎么找? 1679798
邀请新用户注册赠送积分活动 806778
科研通“疑难数据库(出版商)”最低求助积分说明 763372