Perovskite–Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting

光电流 分解水 串联 赤铁矿 能量转换效率 钙钛矿(结构) 材料科学 光伏系统 硒化铜铟镓太阳电池 可逆氢电极 钙钛矿太阳能电池 光电子学 光电化学电池 太阳能电池 纳米技术 化学 电极 矿物学 光催化 电化学 工作电极 物理化学 电解质 催化作用 结晶学 电气工程 生物化学 复合材料 工程类
作者
Gurudayal Gurudayal,Dharani Sabba,Mulmudi Hemant Kumar,Lydia Helena Wong,James Barber,Michaël Grätzel,Nripan Mathews
出处
期刊:Nano Letters [American Chemical Society]
卷期号:15 (6): 3833-3839 被引量:275
标识
DOI:10.1021/acs.nanolett.5b00616
摘要

Photoelectrochemical water splitting half reactions on semiconducting photoelectrodes have received much attention but efficient overall water splitting driven by a single photoelectrode has remained elusive due to stringent electronic and thermodynamic property requirements. Utilizing a tandem configuration wherein the total photovoltage is generated by complementary optical absorption across different semiconducting electrodes is a possible pathway to unassisted overall light-induced water splitting. Because of the low photovoltages generated by conventional photovoltaic materials (e.g., Si, CIGS), such systems typically consist of triple junction design that increases the complexity due to optoelectrical trade-offs and are also not cost-effective. Here, we show that a single solution processed organic-inorganic halide perovskite (CH3NH3PbI3) solar cell in tandem with a Fe2O3 photoanode can achieve overall unassisted water splitting with a solar-to-hydrogen conversion efficiency of 2.4%. Systematic electro-optical studies were performed to investigate the performance of tandem device. It was found that the overall efficiency was limited by the hematite's photocurrent and onset potential. To understand these limitations, we have estimated the intrinsic solar to chemical conversion efficiency of the doped and undoped Fe2O3 photoanodes. The total photopotential generated by our tandem system (1.87 V) exceeds both the thermodynamic and kinetic requirements (1.6 V), resulting in overall water splitting without the assistance of an electrical bias.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助Sunflower采纳,获得10
1秒前
1秒前
yuiip完成签到 ,获得积分10
1秒前
kero发布了新的文献求助10
2秒前
杀出个黎明举报求助违规成功
2秒前
LPPQBB举报求助违规成功
2秒前
GingerF举报求助违规成功
2秒前
2秒前
lalala发布了新的文献求助10
2秒前
李耀京发布了新的文献求助10
3秒前
科研通AI6应助kitty采纳,获得10
3秒前
乐乐应助活力的兔子采纳,获得10
3秒前
鳗鱼如松发布了新的文献求助10
4秒前
传奇3应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
刘志萍应助科研通管家采纳,获得10
5秒前
aldehyde应助科研通管家采纳,获得10
5秒前
5秒前
烟花应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
aldehyde应助科研通管家采纳,获得10
6秒前
自信山河发布了新的文献求助10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
菠菜应助科研通管家采纳,获得150
6秒前
zhonglv7应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
aldehyde应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294519
求助须知:如何正确求助?哪些是违规求助? 4444365
关于积分的说明 13832957
捐赠科研通 4328428
什么是DOI,文献DOI怎么找? 2376121
邀请新用户注册赠送积分活动 1371451
关于科研通互助平台的介绍 1336662