Real-world performance of an enhanced atrial fibrillation detection algorithm in an insertable cardiac monitor

医学 心房颤动 心脏病学 内科学 算法 计算机科学
作者
Suneet Mittal,John Rogers,Shantanu Sarkar,Jodi Koehler,Eduardo N. Warman,Todd T. Tomson,Rod Passman
出处
期刊:Heart Rhythm [Elsevier]
卷期号:13 (8): 1624-1630 被引量:88
标识
DOI:10.1016/j.hrthm.2016.05.010
摘要

Insertable cardiac monitors (ICMs) are used for long-term ECG monitoring. The Reveal LINQ ICM has an improved atrial fibrillation (AF) detection algorithm.The purpose of this study was to investigate the algorithm's real-world performance in patients with syncope, cryptogenic stroke, and known AF.Consecutive patients with implanted ICM and AF detection parameters automatically set and maintained depending on the indication for monitoring were included. A single reviewer annotated all stored episodes after ICM implant. A second reviewer annotated a random sample of 10% of all detected AF episodes. The episode detection positive predictive value as well as true and false detection rates were determined for AF episodes of different durations.The study enrolled 3759 patients (1604 [43%] with syncope, 1049 [28%] with known AF, 1106 [29%] with cryptogenic stroke). Overall, 20,659 AF episodes were detected in 1020 patients. The gross episode detection positive predictive value was 84%, 73%, and 26% for all episodes (≥2 minutes) and improved to 97%, 95%, and 91% for detected AF episodes ≥1 hour in the syncope, known-AF, and cryptogenic stroke patient cohorts, respectively. The true (and false) detection rate was 0.23 (0.05), 3.8 (1.4), and 0.23 (0.65) per patient-month of monitoring for the syncope, known-AF, and cryptogenic stroke patient cohorts, respectively. Limiting ECG storage to the longest detected AF episode significantly reduced the burden of episode adjudication without significantly compromising the identification of patients with true AF.The performance of LINQ ICM is dependent on the AF incidence rate in the population being monitored, the programmed sensitivity of AF algorithm, and the duration of detected AF episodes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向阳花完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
液晶屏99完成签到,获得积分10
3秒前
linfordlu完成签到,获得积分10
4秒前
王淳完成签到 ,获得积分10
6秒前
Lee0923完成签到,获得积分10
7秒前
充电宝应助Puan采纳,获得10
9秒前
历史真相发布了新的文献求助10
12秒前
大轩完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
三百一十四完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
单小芫完成签到 ,获得积分10
18秒前
欧阳完成签到 ,获得积分10
19秒前
小华完成签到 ,获得积分10
20秒前
Ping发布了新的文献求助10
23秒前
撒旦asd完成签到,获得积分20
24秒前
24秒前
whuhustwit完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
27秒前
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
28秒前
芳菲依旧应助科研通管家采纳,获得30
28秒前
ding应助历史真相采纳,获得10
29秒前
Puan发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
33秒前
221完成签到 ,获得积分10
34秒前
zhixue2025完成签到 ,获得积分10
35秒前
36秒前
康康舞曲完成签到 ,获得积分10
39秒前
43秒前
ypres完成签到 ,获得积分10
43秒前
量子星尘发布了新的文献求助10
47秒前
量子星尘发布了新的文献求助10
47秒前
历史真相发布了新的文献求助10
48秒前
LJ_2完成签到 ,获得积分10
51秒前
小路完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706805
求助须知:如何正确求助?哪些是违规求助? 5178783
关于积分的说明 15247486
捐赠科研通 4860222
什么是DOI,文献DOI怎么找? 2608513
邀请新用户注册赠送积分活动 1559364
关于科研通互助平台的介绍 1517217