A simple method for EEG guided transcranial electrical stimulation without models

脑电图 计算机科学 主管(地质) 反问题 电流源 反向 人头 人工智能 电压 算法 有限元法 物理 神经科学 数学 心理学 数学分析 几何学 地貌学 热力学 地质学 量子力学
作者
Andrea Cancelli,Carlo Cottone,Franca Tecchio,Dennis Q. Truong,Jacek Dmochowski,Marom Bikson
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:13 (3): 036022-036022 被引量:39
标识
DOI:10.1088/1741-2560/13/3/036022
摘要

Objective. There is longstanding interest in using EEG measurements to inform transcranial Electrical Stimulation (tES) but adoption is lacking because users need a simple and adaptable recipe. The conventional approach is to use anatomical head-models for both source localization (the EEG inverse problem) and current flow modeling (the tES forward model), but this approach is computationally demanding, requires an anatomical MRI, and strict assumptions about the target brain regions. We evaluate techniques whereby tES dose is derived from EEG without the need for an anatomical head model, target assumptions, difficult case-by-case conjecture, or many stimulation electrodes. Approach. We developed a simple two-step approach to EEG-guided tES that based on the topography of the EEG: (1) selects locations to be used for stimulation; (2) determines current applied to each electrode. Each step is performed based solely on the EEG with no need for head models or source localization. Cortical dipoles represent idealized brain targets. EEG-guided tES strategies are verified using a finite element method simulation of the EEG generated by a dipole, oriented either tangential or radial to the scalp surface, and then simulating the tES-generated electric field produced by each model-free technique. These model-free approaches are compared to a 'gold standard' numerically optimized dose of tES that assumes perfect understanding of the dipole location and head anatomy. We vary the number of electrodes from a few to over three hundred, with focality or intensity as optimization criterion. Main results. Model-free approaches evaluated include (1) voltage-to-voltage, (2) voltage-to-current; (3) Laplacian; and two Ad-Hoc techniques (4) dipole sink-to-sink; and (5) sink to concentric. Our results demonstrate that simple ad hoc approaches can achieve reasonable targeting for the case of a cortical dipole, remarkably with only 2–8 electrodes and no need for a model of the head. Significance. Our approach is verified directly only for a theoretically localized source, but may be potentially applied to an arbitrary EEG topography. For its simplicity and linearity, our recipe for model-free EEG guided tES lends itself to broad adoption and can be applied to static (tDCS), time-variant (e.g., tACS, tRNS, tPCS), or closed-loop tES.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助ztq417采纳,获得10
刚刚
Eason完成签到,获得积分10
2秒前
麟龙完成签到,获得积分10
3秒前
gglp发布了新的文献求助10
4秒前
材料学渣发布了新的文献求助10
5秒前
5秒前
5秒前
jiangjiang发布了新的文献求助10
6秒前
强强发布了新的文献求助10
6秒前
Alanni完成签到 ,获得积分10
7秒前
9秒前
星辰大海应助乐正怡采纳,获得10
9秒前
人间烟火发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
夕诙发布了新的文献求助10
12秒前
13秒前
Seven完成签到,获得积分10
15秒前
充电宝应助胡宇采纳,获得10
16秒前
17秒前
orixero应助jiangjiang采纳,获得10
18秒前
香蕉曼凡发布了新的文献求助10
18秒前
19秒前
sajelsch发布了新的文献求助10
20秒前
Enns发布了新的文献求助30
20秒前
22秒前
郭亚丽完成签到,获得积分20
22秒前
23秒前
人间烟火完成签到,获得积分10
23秒前
23秒前
观鹤轩完成签到,获得积分10
23秒前
23秒前
zzwwill完成签到,获得积分10
24秒前
sajelsch完成签到,获得积分10
26秒前
LHNZMZMHK发布了新的文献求助10
26秒前
27秒前
郭亚丽发布了新的文献求助10
27秒前
28秒前
zuducyow完成签到,获得积分10
28秒前
Chen、Mascot发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4693526
求助须知:如何正确求助?哪些是违规求助? 4064300
关于积分的说明 12566713
捐赠科研通 3762634
什么是DOI,文献DOI怎么找? 2078040
邀请新用户注册赠送积分活动 1106392
科研通“疑难数据库(出版商)”最低求助积分说明 984782