Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data

离散化 替代模型 维数之咒 人工神经网络 流体力学 不确定度量化 参数统计 偏微分方程 流量(数学) 非线性系统 计算机科学 计算流体力学 人工智能 数学优化 物理 应用数学 数学 机器学习 几何学 数学分析 机械 量子力学 统计
作者
Luning Sun,Han Gao,Shaowu Pan,Jianxun Wang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:361: 112732-112732 被引量:738
标识
DOI:10.1016/j.cma.2019.112732
摘要

Numerical simulations on fluid dynamics problems primarily rely on spatially or/and temporally discretization of the governing equation into the finite-dimensional algebraic system solved by computers. Due to complicated nature of the physics and geometry, such process can be computational prohibitive for most real-time applications and many-query analyses. Therefore, developing a cost-effective surrogate model is of great practical significance. Deep learning (DL) has shown new promises for surrogate modeling due to its capability of handling strong nonlinearity and high dimensionality. However, the off-the-shelf DL architectures fail to operate when the data becomes sparse. Unfortunately, data is often insufficient in most parametric fluid dynamics problems since each data point in the parameter space requires an expensive numerical simulation based on the first principle, e.g., Naiver--Stokes equations. In this paper, we provide a physics-constrained DL approach for surrogate modeling of fluid flows without relying on any simulation data. Specifically, a structured deep neural network (DNN) architecture is devised to enforce the initial and boundary conditions, and the governing partial differential equations are incorporated into the loss of the DNN to drive the training. Numerical experiments are conducted on a number of internal flows relevant to hemodynamics applications, and the forward propagation of uncertainties in fluid properties and domain geometry is studied as well. The results show excellent agreement on the flow field and forward-propagated uncertainties between the DL surrogate approximations and the first-principle numerical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子木子粒完成签到 ,获得积分10
1秒前
weixiaosi完成签到,获得积分10
1秒前
李爱国应助笨笨的店员采纳,获得10
1秒前
Lucas应助刘俊采纳,获得10
3秒前
4秒前
害羞的雁易完成签到 ,获得积分10
4秒前
8R60d8应助LL采纳,获得10
6秒前
真水无香完成签到,获得积分10
6秒前
姚姚发布了新的文献求助10
6秒前
8秒前
陈嘉绍完成签到,获得积分10
8秒前
Akim应助小魏采纳,获得10
8秒前
汉堡包应助小魏采纳,获得10
8秒前
激昂的蜗牛应助赫天德采纳,获得10
9秒前
9秒前
12秒前
七栀完成签到,获得积分10
12秒前
酷波er应助zhangbinhe采纳,获得10
12秒前
000发布了新的文献求助10
14秒前
李某发布了新的文献求助10
14秒前
yuze完成签到,获得积分10
15秒前
白榆发布了新的文献求助10
15秒前
16秒前
peipei发布了新的文献求助10
16秒前
16秒前
坚强夜白发布了新的文献求助10
18秒前
地三鲜完成签到,获得积分10
19秒前
cqq完成签到,获得积分10
19秒前
搜集达人应助淡淡的炳采纳,获得20
19秒前
uniquelin完成签到,获得积分10
21秒前
22秒前
25秒前
26秒前
体贴半仙发布了新的文献求助10
26秒前
烟花应助sje采纳,获得10
26秒前
慕青应助温暖白容采纳,获得10
26秒前
mirrovo完成签到 ,获得积分10
27秒前
wanci应助科研通管家采纳,获得10
27秒前
CR7应助科研通管家采纳,获得20
27秒前
赘婿应助科研通管家采纳,获得30
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3945280
求助须知:如何正确求助?哪些是违规求助? 3490156
关于积分的说明 11055349
捐赠科研通 3221175
什么是DOI,文献DOI怎么找? 1780440
邀请新用户注册赠送积分活动 865397
科研通“疑难数据库(出版商)”最低求助积分说明 799854