Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data

离散化 替代模型 维数之咒 人工神经网络 流体力学 不确定度量化 参数统计 偏微分方程 流量(数学) 非线性系统 计算机科学 计算流体力学 人工智能 数学优化 物理 应用数学 数学 机器学习 几何学 数学分析 机械 统计 量子力学
作者
Luning Sun,Han Gao,Shaowu Pan,Jianxun Wang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:361: 112732-112732 被引量:783
标识
DOI:10.1016/j.cma.2019.112732
摘要

Numerical simulations on fluid dynamics problems primarily rely on spatially or/and temporally discretization of the governing equation into the finite-dimensional algebraic system solved by computers. Due to complicated nature of the physics and geometry, such process can be computational prohibitive for most real-time applications and many-query analyses. Therefore, developing a cost-effective surrogate model is of great practical significance. Deep learning (DL) has shown new promises for surrogate modeling due to its capability of handling strong nonlinearity and high dimensionality. However, the off-the-shelf DL architectures fail to operate when the data becomes sparse. Unfortunately, data is often insufficient in most parametric fluid dynamics problems since each data point in the parameter space requires an expensive numerical simulation based on the first principle, e.g., Naiver--Stokes equations. In this paper, we provide a physics-constrained DL approach for surrogate modeling of fluid flows without relying on any simulation data. Specifically, a structured deep neural network (DNN) architecture is devised to enforce the initial and boundary conditions, and the governing partial differential equations are incorporated into the loss of the DNN to drive the training. Numerical experiments are conducted on a number of internal flows relevant to hemodynamics applications, and the forward propagation of uncertainties in fluid properties and domain geometry is studied as well. The results show excellent agreement on the flow field and forward-propagated uncertainties between the DL surrogate approximations and the first-principle numerical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽机器猫关注了科研通微信公众号
刚刚
浮游应助浮浮世世采纳,获得10
6秒前
一点点晚风完成签到,获得积分10
7秒前
091完成签到 ,获得积分10
7秒前
juju子完成签到,获得积分10
9秒前
10秒前
10秒前
99完成签到,获得积分10
11秒前
在水一方应助叮叮猫采纳,获得10
12秒前
上官若男应助tqqwerty采纳,获得10
12秒前
asd_1应助南国之霄采纳,获得10
14秒前
14秒前
14秒前
烟花应助椰子树采纳,获得10
16秒前
景觅波完成签到,获得积分10
17秒前
nenoaowu发布了新的文献求助10
17秒前
多久上课发布了新的文献求助10
17秒前
jenningseastera应助what采纳,获得30
18秒前
GeZhang完成签到,获得积分10
18秒前
19秒前
小明应助科研通管家采纳,获得10
19秒前
19秒前
orixero应助科研通管家采纳,获得10
19秒前
19秒前
思源应助科研通管家采纳,获得10
20秒前
飘逸的傲霜完成签到 ,获得积分10
20秒前
今后应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
ld发布了新的文献求助10
20秒前
20秒前
Orange应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
一一发布了新的文献求助10
21秒前
浮游应助科研通管家采纳,获得30
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538576
求助须知:如何正确求助?哪些是违规求助? 3973016
关于积分的说明 12307581
捐赠科研通 3639826
什么是DOI,文献DOI怎么找? 2004103
邀请新用户注册赠送积分活动 1039548
科研通“疑难数据库(出版商)”最低求助积分说明 928849