光催化
材料科学
石墨氮化碳
异质结
氮化碳
纳米技术
太阳能燃料
碳纤维
氮化物
光电子学
复合数
催化作用
化学
生物化学
复合材料
图层(电子)
作者
Meng Shen,Lingxia Zhang,Jianlin Shi
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2018-07-20
卷期号:29 (41): 412001-412001
被引量:62
标识
DOI:10.1088/1361-6528/aad4c8
摘要
A metal-free photocatalyst, graphitic carbon nitride (GCN) with a moderate band gap catering for visible-light excitation, shows amazing potential in various photocatalytic applications. Carbon dioxide reduction using diversified photocatalysts has been attracting increasing public attention and the extensively studied GCN is one of the most promising photocatalysts. However, because of the low concentration and high recombination rate of photogenerated carriers, and some other disadvantages of the pristine GCN photocatalyst, the solar-to-fuel conversion efficiency is too low for practical use. Modifications or optimizations of GCN are therefore important to enhance its CO2 photocatalytic conversion performance. This review summarizes the research progress made during the past five years on GCN-based photocatalysts in two main areas, which includes pristine GCN and its molecular modifications, and heterostructure composite photocatalysts based on GCN, for CO2 reduction. It is expected that this review may benefit the development of GCN-based photocatalysts for CO2-to-fuel conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI