已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning and statistical methods for clustering single-cell RNA-sequencing data

聚类分析 计算机科学 计算生物学 数据挖掘 核糖核酸 人工智能 RNA序列 生物 遗传学 转录组 基因 基因表达
作者
Raphael Petegrosso,Zhuliu Li,Rui Kuang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:21 (4): 1209-1223 被引量:187
标识
DOI:10.1093/bib/bbz063
摘要

Single-cell RNAsequencing (scRNA-seq) technologies have enabled the large-scale whole-transcriptome profiling of each individual single cell in a cell population. A core analysis of the scRNA-seq transcriptome profiles is to cluster the single cells to reveal cell subtypes and infer cell lineages based on the relations among the cells. This article reviews the machine learning and statistical methods for clustering scRNA-seq transcriptomes developed in the past few years. The review focuses on how conventional clustering techniques such as hierarchical clustering, graph-based clustering, mixture models, $k$-means, ensemble learning, neural networks and density-based clustering are modified or customized to tackle the unique challenges in scRNA-seq data analysis, such as the dropout of low-expression genes, low and uneven read coverage of transcripts, highly variable total mRNAs from single cells and ambiguous cell markers in the presence of technical biases and irrelevant confounding biological variations. We review how cell-specific normalization, the imputation of dropouts and dimension reduction methods can be applied with new statistical or optimization strategies to improve the clustering of single cells. We will also introduce those more advanced approaches to cluster scRNA-seq transcriptomes in time series data and multiple cell populations and to detect rare cell types. Several software packages developed to support the cluster analysis of scRNA-seq data are also reviewed and experimentally compared to evaluate their performance and efficiency. Finally, we conclude with useful observations and possible future directions in scRNA-seq data analytics.All the source code and data are available at https://github.com/kuanglab/single-cell-review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉熏的灵完成签到 ,获得积分10
2秒前
梵高完成签到,获得积分10
3秒前
非我完成签到 ,获得积分10
3秒前
5秒前
思辰。完成签到,获得积分10
6秒前
所所应助落后猕猴桃采纳,获得10
8秒前
雪满头发布了新的文献求助10
10秒前
君知完成签到,获得积分10
10秒前
zzzllove完成签到 ,获得积分10
11秒前
aldd关注了科研通微信公众号
14秒前
英勇星月完成签到 ,获得积分10
14秒前
16秒前
懵懂的子骞完成签到 ,获得积分10
17秒前
雪满头完成签到,获得积分0
19秒前
科研通AI2S应助Hhh采纳,获得10
19秒前
科研通AI5应助傲娇泥猴桃采纳,获得10
26秒前
firesquall完成签到,获得积分10
30秒前
一丢丢完成签到 ,获得积分10
31秒前
32秒前
上官若男应助盈月采纳,获得10
34秒前
36秒前
Coffee完成签到 ,获得积分10
36秒前
36秒前
绝尘发布了新的文献求助10
40秒前
大模型应助一一采纳,获得10
42秒前
xiaokang123完成签到,获得积分10
43秒前
45秒前
所所应助wzh采纳,获得10
45秒前
单纯麦片完成签到,获得积分10
46秒前
落后猕猴桃完成签到,获得积分10
46秒前
司徒寒烟发布了新的文献求助10
49秒前
共享精神应助阿瓜采纳,获得10
49秒前
飞快的孱完成签到,获得积分10
49秒前
LIUFEIYE8887完成签到 ,获得积分10
50秒前
传奇3应助绝尘采纳,获得10
52秒前
eureka发布了新的文献求助10
52秒前
53秒前
53秒前
54秒前
冷酷愚志完成签到,获得积分10
55秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800847
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329133
捐赠科研通 3062794
什么是DOI,文献DOI怎么找? 1681200
邀请新用户注册赠送积分活动 807440
科研通“疑难数据库(出版商)”最低求助积分说明 763702