Quantifying Transport, Geometrical, and Morphological Parameters in Li-Ion Cathode Phases Using X-ray Microtomography

材料科学 X射线显微断层摄影术 离子 阴极 X射线 光学 量子力学 物理 物理化学 化学
作者
T. Rajendra,Aashutosh Mistry,Prehit Patel,Logan Ausderau,Xianghui Xiao,Partha P. Mukherjee,George J. Nelson
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:11 (22): 19933-19942 被引量:21
标识
DOI:10.1021/acsami.8b22758
摘要

The charge/discharge capabilities of Li-ion cathodes are influenced by the meso-scale geometry, transport properties, and morphological parameters of the constituent phases in the cathode: active material, binder, conductive additive, and pore. Electrode processing influences the structure and attendant properties of these constituents. Thus, performance of the battery can be enhanced by correlating various electrode processing techniques with the charge/discharge behavior in the lithium-ion cathodes. X-ray microtomography was used to image samples obtained from pristine Li(Ni1/3Mn1/3Co1/3)O2 (NMC) cathodes subjected to distinct processing approaches. Two sample preparation approaches were applied to the samples prior to microtomography. Casting the samples in epoxy yielded only the cathode active material domain. Encapsulating the sample with Kapton tape yielded phase contrast data that permitted segmentation of the active material and combined carbon/binder and pore regions. Geometrical and morphological details of the active material and the secondary phases were characterized and compared between the varied processing approaches. Calendered and ball-milled samples exhibited distinct differences in both geometry and morphology. Drying modes demonstrated variation in the distribution of the secondary and pore phases. Applying phase contrast capabilities, the processing-morphology relationship can be better understood to enhance overall battery performance across multiple scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助神马都不懂采纳,获得10
刚刚
七七四十九完成签到,获得积分10
1秒前
1秒前
研友_8KAP5n完成签到,获得积分10
1秒前
gaojing发布了新的文献求助10
2秒前
小龙虾完成签到,获得积分10
2秒前
2秒前
科研通AI5应助Ly啦啦啦采纳,获得10
2秒前
zhuxiaonian完成签到,获得积分10
3秒前
ll发布了新的文献求助10
3秒前
3秒前
Haucicy完成签到 ,获得积分10
4秒前
李秋静完成签到,获得积分10
4秒前
飞云发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
wst发布了新的文献求助10
5秒前
tao完成签到,获得积分10
6秒前
Shell完成签到,获得积分10
6秒前
天际线完成签到,获得积分20
6秒前
111完成签到,获得积分10
7秒前
小白应助夕荀采纳,获得20
7秒前
Orange应助Bear采纳,获得10
7秒前
8秒前
蒋老黑完成签到,获得积分10
8秒前
婉腾完成签到 ,获得积分10
8秒前
维尼完成签到,获得积分10
9秒前
美满的金连完成签到 ,获得积分10
9秒前
调皮蛋完成签到,获得积分10
10秒前
我是老大应助沉静晓丝采纳,获得10
10秒前
juridfe发布了新的文献求助10
10秒前
CC完成签到,获得积分10
11秒前
11秒前
科研小白发布了新的文献求助10
11秒前
居然是我完成签到,获得积分10
11秒前
12秒前
Gosling完成签到,获得积分10
12秒前
李健的粉丝团团长应助www采纳,获得10
12秒前
薛珊珊完成签到,获得积分10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834177
求助须知:如何正确求助?哪些是违规求助? 3376774
关于积分的说明 10494951
捐赠科研通 3096188
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820249
科研通“疑难数据库(出版商)”最低求助积分说明 771915