Spectral and Temporal Feature Learning With Two-Stream Neural Networks for Mental Workload Assessment

工作量 计算机科学 脑电图 保险丝(电气) 卷积神经网络 人工智能 深度学习 模式识别(心理学) 特征(语言学) 特征提取 机器学习 心理学 工程类 语言学 哲学 精神科 电气工程 操作系统
作者
Pengbo Zhang,Xue Wang,Junfeng Chen,Wei You,Weihang Zhang
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 1149-1159 被引量:74
标识
DOI:10.1109/tnsre.2019.2913400
摘要

People's mental workload profoundly affects their work efficiency and health. Mental workload assessment can be used to effectively avoid serious accidents caused by excessive mental workload. Both electroencephalogram (EEG) spectral features and its temporal features have proven to be useful in addressing this problem. The fusion of the two types of features can provide rich distinguishing information for improving mental workload assessment. Benefiting from the progress of deep learning, this study proposes the two-stream neural networks (TSNN) for fusing the two types of EEG features. Compared with hand-crafted features, the TSNN can learn and fuse EEG features from the spectral and temporal dimensions automatically without prior knowledge. The TSNN includes a spectral stream and a temporal stream. Each stream consists of a convolutional neural network (CNN) and a temporal convolutional network (TCN) to learn spectral or temporal features from EEG topographic maps. To fuse the learned spectral and temporal information, we concatenate the output of the two streams prior to the fully connected layer. EEG data were collected from 17 subjects who performed n-back tasks with easy, medium, and hard difficulty levels, leading to a three-class mental workload classification. The results show that the TSNN achieves an average accuracy of 91.9%, which is a significant improvement over baseline classifiers based on hand-crafted features. The TSNN also outperforms state-of-the-art deep learning methods developed for EEG classification. The results indicate that the proposed structure is promising for fusing spectral and temporal features for mental workload assessment. In addition, it provides a high-precision approach for potential applications during cognitive activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杨馨蕊发布了新的文献求助10
1秒前
blue发布了新的文献求助20
3秒前
沉默的婴发布了新的文献求助10
4秒前
善良元瑶完成签到,获得积分10
6秒前
今后应助独特亦旋采纳,获得10
9秒前
10秒前
SciGPT应助tal采纳,获得10
12秒前
善学以致用应助郭帅采纳,获得10
13秒前
14秒前
14秒前
15秒前
15秒前
Wendy完成签到 ,获得积分10
18秒前
19秒前
20秒前
奶糖爱果冻完成签到 ,获得积分10
21秒前
21秒前
22秒前
陈龙海发布了新的文献求助10
22秒前
24秒前
wanci应助SYX采纳,获得10
25秒前
rayzhanghl完成签到,获得积分10
26秒前
enen发布了新的文献求助10
26秒前
27秒前
28秒前
古藤完成签到 ,获得积分10
28秒前
天真的博完成签到 ,获得积分20
29秒前
冰洁儿完成签到,获得积分10
32秒前
33秒前
34秒前
34秒前
36秒前
弓長玉王令完成签到,获得积分10
37秒前
彭凯发布了新的文献求助10
38秒前
BLING完成签到,获得积分10
39秒前
39秒前
40秒前
共享精神应助陈龙海采纳,获得10
41秒前
SYX发布了新的文献求助10
42秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4165781
求助须知:如何正确求助?哪些是违规求助? 3701415
关于积分的说明 11685795
捐赠科研通 3390100
什么是DOI,文献DOI怎么找? 1859214
邀请新用户注册赠送积分活动 919574
科研通“疑难数据库(出版商)”最低求助积分说明 832228