单层
材料科学
神经形态工程学
二硫化钼
纳米电子学
纳米技术
缩放比例
六方氮化硼
光电子学
记忆电阻器
非易失性存储器
薄膜
离子
化学物理
石墨烯
电子工程
计算机科学
几何学
数学
机器学习
人工神经网络
冶金
物理
量子力学
工程类
作者
Xiaohan Wu,Ruijing Ge,Po‐An Chen,Harry Chou,Zhepeng Zhang,Yanfeng Zhang,Sanjay K. Banerjee,Meng‐Hsueh Chiang,Jack C. Lee,Deji Akinwande
标识
DOI:10.1002/adma.201806790
摘要
Abstract 2D materials have attracted much interest over the past decade in nanoelectronics. However, it was believed that the atomically thin layered materials are not able to show memristive effect in vertically stacked structure, until the recent discovery of monolayer transition metal dichalcogenide (TMD) atomristors, overcoming the scaling limit to sub‐nanometer. Herein, the nonvolatile resistance switching (NVRS) phenomenon in monolayer hexagonal boron nitride (h‐BN), a typical 2D insulator, is reported. The h‐BN atomristors are studied using different electrodes and structures, featuring forming‐free switching in both unipolar and bipolar operations, with large on/off ratio (up to 10 7 ). Moreover, fast switching speed (<15 ns) is demonstrated via pulse operation. Compared with monolayer TMDs, the one‐atom‐thin h‐BN sheet reduces the vertical scaling to ≈0.33 nm, representing a record thickness for memory materials. Simulation results based on ab‐initio method reveal that substitution of metal ions into h‐BN vacancies during electrical switching is a likely mechanism. The existence of NVRS in monolayer h‐BN indicates fruitful interactions between defects, metal ions and interfaces, and can advance emerging applications on ultrathin flexible memory, printed electronics, neuromorphic computing, and radio frequency switches.
科研通智能强力驱动
Strongly Powered by AbleSci AI