A Five-gene Signature for Predicting the Prognosis of Colorectal Cancer

结直肠癌 比例危险模型 医学 单变量 多元统计 内科学 肿瘤科 生存分析 多元分析 基因签名 癌症 基因 基因表达 计算机科学 生物 机器学习 生物化学
作者
Junfeng Hong,Xiangwu Lin,Xinyu Hu,Xiaolong Wu,Wenzheng Fang
出处
期刊:Current Gene Therapy [Bentham Science Publishers]
卷期号:21 (4): 280-289 被引量:16
标识
DOI:10.2174/1566523220666201012151803
摘要

Background: Colorectal cancer (CRC) is a kind of tumor with high incidence and its treatment situation is still very difficult despite the constant renewal and development of treatment methods. Objective: To assist the prognosis, monitoring and survival of CRC patients with a model. Methods: In this study, we established a new prognostic model for CRC. Four groups of CRC data were accessed from the GEO database, and then differential analysis (logFoldChange>1, adjust- P<0.05) was carried out by using the limma package along with the RobustRankAggreg package used to identify the overlapping differentially expressed genes (DEGs). Univariate and multivariate Cox regression analyses were performed on the DEGs to screen the genes related to the patient’s prognosis, and a five-gene prognostic prediction model (including RPX, CXCL13, MMP10, FABP4 and CLDN23) was constructed. Then, we further plotted ROC curves to evaluate the predictive performance of the five-gene prognostic signature in the TCGA data sets (the AUC values of 1, 3, 5-year survival were 0.68, 0.632, 0.675, respectively) and an external independent data set GSE2962 (the AUC values of 1, 3, 5-year survival were 0.689, 0.702, 0.631, respectively). Results: The results showed that the model could effectively predict the prognosis of CRC patients, which provides a robust predictive model for the prognosis of CRC patients. Conclusion: The model could effectively predict the prognosis of CRC patients, which provides a robust predictive model for the prognosis of CRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张丫丫发布了新的文献求助10
1秒前
3秒前
无私鹰发布了新的文献求助10
6秒前
geather完成签到,获得积分10
7秒前
无花果应助柳煜城采纳,获得20
7秒前
BENRONG发布了新的文献求助10
8秒前
风中的晓露完成签到 ,获得积分10
8秒前
Vivian完成签到,获得积分10
8秒前
认真的小熊饼干完成签到,获得积分10
9秒前
木木彡完成签到,获得积分10
9秒前
酷波er应助limin采纳,获得10
9秒前
晶晶完成签到,获得积分10
10秒前
小马甲应助qiaokizhang采纳,获得10
11秒前
天天快乐应助keyanrubbish采纳,获得10
13秒前
曹勇发布了新的文献求助30
13秒前
13秒前
汉堡包应助十月采纳,获得10
14秒前
luca发布了新的文献求助10
15秒前
酷波er应助ZIS采纳,获得10
15秒前
FashionBoy应助高兴星月采纳,获得10
17秒前
17秒前
共享精神应助乔垣结衣采纳,获得10
18秒前
夏野完成签到 ,获得积分10
18秒前
yuxiang发布了新的文献求助10
18秒前
酷波er应助2623196525采纳,获得10
18秒前
初见完成签到,获得积分10
18秒前
20秒前
生动凝旋完成签到,获得积分10
21秒前
roselau发布了新的文献求助10
22秒前
小二郎应助yyl采纳,获得10
22秒前
研友_VZG7GZ应助皮卡丘采纳,获得10
22秒前
若若1223完成签到 ,获得积分10
22秒前
ZIS发布了新的文献求助10
25秒前
无私鹰完成签到,获得积分10
26秒前
Verdigris完成签到,获得积分10
27秒前
28秒前
29秒前
30秒前
30秒前
Liangyu发布了新的文献求助10
31秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828224
求助须知:如何正确求助?哪些是违规求助? 3370531
关于积分的说明 10463777
捐赠科研通 3090448
什么是DOI,文献DOI怎么找? 1700414
邀请新用户注册赠送积分活动 817833
科研通“疑难数据库(出版商)”最低求助积分说明 770486