亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Derivation of a Matched Molecular Pairs Based ADME/Tox Knowledge Base for Compound Optimization

广告 计算机科学 工作流程 数据挖掘 软件 知识库 数据库 人工智能 化学 程序设计语言 生物化学 体外
作者
James A. Lumley,Prashant Desai,Ji‐Bo Wang,Suntara Cahya,Hongzhou Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (10): 4757-4771 被引量:15
标识
DOI:10.1021/acs.jcim.0c00583
摘要

Matched Molecular Pairs (MMP) analysis is a well-established technique for Structure Activity and Property Analysis (SAR and SPR). Summarizing multiple MMPs that describe the same structural change into a single chemical transform can be a powerful tool for prediction (termed Transform from here on). This is particularly useful in the area of Absorption, Distribution, Metabolism, and Elimination (ADME) analysis that is less influenced by 3D structural binding effects. The creation of a knowledge database containing many of these Transforms across typical ADME assays promises to be a powerful approach to aid multidimensional optimization. We present a detailed workflow for the derivation of such a database. We include details of an MMP fragmentation algorithm with associated statistical summarization methods for the derivation of Transforms. This is made freely available as part of the LillyMol software package. We describe the application of this method to several ADME/Tox (Toxicity) assay data sets and highlight multiple cases where the impact of traditional medicinal chemistry Transforms is contradicted by MMP data. We also describe the internal software interface used by medicinal chemists to aid the design of new compounds via automated suggestion. This approach utilizes the matched pairs database to "suggest" improved compounds in an automated design scenario. A nonvisual script-based version of the automated suggestions code with an associated set of described chemical Transforms is also made freely available along with this paper and as part of the LillyMol software package. Finally, we contrast this knowledge database against a larger database of all MMPs derived from a 2 million compound diversity set and a subset of MMPs seen in historical discovery projects. The comparison against all transforms in the diversity collection highlights the very low coverage of the transform database as compared to all possible transforms involving 15 atom fragments. The comparison against a smaller subset of Transforms seen on internal Medicinal Chemistry projects shows better coverage of the transform database for a small set of common medicinal chemistry strategies. Within the context of all possible transforms available to a medicinal chemistry project team, the challenge remains to move beyond mere idea generation from past projects toward high quality prediction for novel ADME/Tox modulating Transforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QI完成签到,获得积分10
2秒前
4秒前
inRe发布了新的文献求助10
7秒前
QI发布了新的文献求助10
14秒前
33秒前
MiaMia应助ceeray23采纳,获得20
34秒前
Jenny完成签到,获得积分10
38秒前
Selena发布了新的文献求助10
38秒前
43秒前
脑洞疼应助Selena采纳,获得10
47秒前
自由的梦露完成签到,获得积分10
49秒前
icoo发布了新的文献求助10
50秒前
希望天下0贩的0应助icoo采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
1分钟前
Criminology34应助ceeray23采纳,获得20
1分钟前
Criminology34应助ceeray23采纳,获得20
1分钟前
科研通AI6应助危机的尔琴采纳,获得10
1分钟前
1分钟前
李月完成签到 ,获得积分10
1分钟前
hugeyoung发布了新的文献求助10
1分钟前
青山完成签到 ,获得积分10
1分钟前
赘婿应助sfwrbh采纳,获得10
2分钟前
hugeyoung完成签到,获得积分10
2分钟前
2分钟前
icoo发布了新的文献求助10
2分钟前
3分钟前
3分钟前
liuheqian发布了新的文献求助10
3分钟前
神医magical发布了新的文献求助10
3分钟前
TXZ06完成签到,获得积分10
3分钟前
Jason完成签到,获得积分20
4分钟前
Jason发布了新的文献求助10
4分钟前
小珂完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
orixero应助icoo采纳,获得10
4分钟前
4分钟前
4分钟前
icoo发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628412
求助须知:如何正确求助?哪些是违规求助? 4716854
关于积分的说明 14964206
捐赠科研通 4786131
什么是DOI,文献DOI怎么找? 2555643
邀请新用户注册赠送积分活动 1516873
关于科研通互助平台的介绍 1477471