Artificial Intelligence: the “Trait D’Union” in Different Analysis Approaches of Autism Spectrum Disorder Studies

自闭症谱系障碍 自闭症 心理学 特质 光谱(功能分析) 人工智能 计算机科学 精神科 物理 程序设计语言 量子力学
作者
F. Marcianò,Giorgia Venutolo,Carminia Marina Ingenito,A. Verbeni,Concetta Terracciano,Elizabeth Plunk,Francesco Garaci,Armando Ugo Cavallo,Alessio Fasano
出处
期刊:Current Medicinal Chemistry [Bentham Science Publishers]
卷期号:28 (32): 6591-6618 被引量:8
标识
DOI:10.2174/0929867328666210203205221
摘要

Autistic Spectrum Disorder (ASD) is a neurodevelopmental condition affecting approximately 1 out of 70 (range 1:59 - 1:89) children worldwide. It is characterized by a delay in cognitive capabilities, repetitive and restricted behaviors and deficit in communication and social interaction. Several factors seem to be associated with ASD development; its heterogeneous nature makes the diagnosis difficult and slow since it is essentially based on screening tools focused on stereotypical and repetitive behaviors, gait, facial emotion expression and speech assessments. Recently, artificial intelligence (AI) has been widely used to investigate ASD with the overall goal of simplifying and speeding up the diagnostic process as well as making earlier access to therapies possible. The aim of this review is to provide an overview of the state-of-the-art research in the ASD field, identifying and describing machine learning (ML) approaches in ASD literature that could be used by clinicians to improve diagnostic capability and treatment efficiency. A systematic search was conducted and the resulting articles were subdivided into several categories reflecting the different fields of study associated with ASD research. The existing literature has widely demonstrated the potential of ML in several types of ASD study analyses: behavior, gait, speech, facial emotion expression, neuroimaging, genetics, and metabolomics. Therefore, AI techniques are becoming increasingly implemented and accepted, so highlighting the power of ML approaches to extract and obtain knowledge from a large volume of data. This makes ML a promising tool for future ASD research and clinical endeavors suggesting possible avenues for improving ASD screening, diagnostic and therapeutic tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy发布了新的文献求助30
1秒前
阿莫西林胶囊完成签到,获得积分10
1秒前
在水一方应助7777juju采纳,获得10
2秒前
3秒前
坦率的书竹完成签到 ,获得积分10
4秒前
orixero应助Liu采纳,获得10
4秒前
健忘的如雪完成签到,获得积分10
5秒前
李爱国应助冷静烤鸡采纳,获得10
6秒前
无花果应助冷艳莛采纳,获得10
6秒前
6秒前
小子发布了新的文献求助10
7秒前
Q11完成签到,获得积分10
7秒前
绿柳刀完成签到,获得积分10
7秒前
云yun完成签到,获得积分10
7秒前
hh完成签到,获得积分10
8秒前
科研通AI2S应助如意的秋白采纳,获得10
8秒前
9秒前
钢牙刷完成签到,获得积分10
9秒前
9秒前
居北发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
Liu完成签到,获得积分10
11秒前
MYYY完成签到,获得积分10
11秒前
钢牙刷发布了新的文献求助10
12秒前
花姐发布了新的文献求助10
13秒前
chenajp关注了科研通微信公众号
13秒前
Mansis发布了新的文献求助50
13秒前
14秒前
如意安青发布了新的文献求助10
14秒前
15秒前
kim发布了新的文献求助10
15秒前
Yolo发布了新的文献求助10
15秒前
Amy完成签到,获得积分10
16秒前
充电宝应助故意的小熊猫采纳,获得10
17秒前
18秒前
19秒前
科目三应助Mansis采纳,获得50
19秒前
20秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842060
求助须知:如何正确求助?哪些是违规求助? 3384246
关于积分的说明 10533237
捐赠科研通 3104526
什么是DOI,文献DOI怎么找? 1709680
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773957