反推
梯度下降
控制理论(社会学)
趋同(经济学)
非线性系统
人工神经网络
计算机科学
水下
自适应控制
方案(数学)
过程(计算)
滤波器(信号处理)
控制(管理)
数学优化
控制工程
人工智能
数学
工程类
计算机视觉
数学分析
海洋学
物理
量子力学
地质学
经济
经济增长
操作系统
作者
Jianbin Qiu,Min Ma,Tong Wang,Huijun Gao
标识
DOI:10.1109/tnnls.2021.3056585
摘要
This article investigates the adaptive learning control problem for a class of nonlinear autonomous underwater vehicles (AUVs) with unknown uncertainties. The unknown nonlinear functions in the AUVs are approximated by radial basis function neural networks (RBFNNs), in which the weight updating laws are designed via gradient descent algorithm. The proposed gradient descent-based control scheme guarantees the semiglobal uniform ultimate boundedness (SUUB) of the system and the fast convergence of the weight updating laws. In order to reduce the computational burden during the backstepping control design process, the command-filter-based design technique is incorporated into the adaptive learning control strategy. Finally, simulation studies are given to demonstrate the effectiveness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI