清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

1 km monthly temperature and precipitation dataset for China from 1901 to 2017

Cru公司 缩小尺度 气候学 双线性插值 环境科学 降水 均方误差 插值(计算机图形学) 多元插值 气象学 代理(统计) 双三次插值 计算机科学 统计 地理 数学 地质学 计算机图形学(图像) 动画
作者
Shouzhang Peng,Yongxia Ding,Wenzhao Liu,Zhi Li
出处
期刊:Earth System Science Data 卷期号:11 (4): 1931-1946 被引量:669
标识
DOI:10.5194/essd-11-1931-2019
摘要

Abstract. High-spatial-resolution and long-term climate data are highly desirable for understanding climate-related natural processes. China covers a large area with a low density of weather stations in some (e.g., mountainous) regions. This study describes a 0.5′ (∼ 1 km) dataset of monthly air temperatures at 2 m (minimum, maximum, and mean proxy monthly temperatures, TMPs) and precipitation (PRE) for China in the period of 1901–2017. The dataset was spatially downscaled from the 30′ Climatic Research Unit (CRU) time series dataset with the climatology dataset of WorldClim using delta spatial downscaling and evaluated using observations collected in 1951–2016 by 496 weather stations across China. Prior to downscaling, we evaluated the performances of the WorldClim data with different spatial resolutions and the 30′ original CRU dataset using the observations, revealing that their qualities were overall satisfactory. Specifically, WorldClim data exhibited better performance at higher spatial resolution, while the 30′ original CRU dataset had low biases and high performances. Bicubic, bilinear, and nearest-neighbor interpolation methods employed in downscaling processes were compared, and bilinear interpolation was found to exhibit the best performance to generate the downscaled dataset. Compared with the evaluations of the 30′ original CRU dataset, the mean absolute error of the new dataset (i.e., of the 0.5′ dataset downscaled by bilinear interpolation) decreased by 35.4 %–48.7 % for TMPs and by 25.7 % for PRE. The root-mean-square error decreased by 32.4 %–44.9 % for TMPs and by 25.8 % for PRE. The Nash–Sutcliffe efficiency coefficients increased by 9.6 %–13.8 % for TMPs and by 31.6 % for PRE, and correlation coefficients increased by 0.2 %–0.4 % for TMPs and by 5.0 % for PRE. The new dataset could provide detailed climatology data and annual trends of all climatic variables across China, and the results could be evaluated well using observations at the station. Although the new dataset was not evaluated before 1950 owing to data unavailability, the quality of the new dataset in the period of 1901–2017 depended on the quality of the original CRU and WorldClim datasets. Therefore, the new dataset was reliable, as the downscaling procedure further improved the quality and spatial resolution of the CRU dataset and was concluded to be useful for investigations related to climate change across China. The dataset presented in this article has been published in the Network Common Data Form (NetCDF) at https://doi.org/10.5281/zenodo.3114194 for precipitation (Peng, 2019a) and https://doi.org/10.5281/zenodo.3185722 for air temperatures at 2 m (Peng, 2019b) and includes 156 NetCDF files compressed in zip format and one user guidance text file.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WYnini完成签到 ,获得积分10
4秒前
whuhustwit完成签到,获得积分10
18秒前
zxx完成签到 ,获得积分10
25秒前
652183758完成签到 ,获得积分10
32秒前
抹缇卡完成签到 ,获得积分10
50秒前
浩浩完成签到 ,获得积分10
52秒前
陆黑暗完成签到 ,获得积分10
54秒前
1分钟前
科研佟完成签到 ,获得积分10
1分钟前
cadcae完成签到,获得积分10
1分钟前
迅速的念芹完成签到 ,获得积分10
1分钟前
焚心结完成签到 ,获得积分10
1分钟前
六等于三二一完成签到 ,获得积分10
1分钟前
快乐的七宝完成签到 ,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
1分钟前
serenity完成签到 ,获得积分10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
瘦瘦煎饼完成签到 ,获得积分10
1分钟前
ChatGPT发布了新的文献求助10
2分钟前
三脸茫然完成签到 ,获得积分10
2分钟前
ChatGPT完成签到,获得积分10
2分钟前
研友完成签到 ,获得积分10
2分钟前
fffffffffffffff完成签到 ,获得积分10
2分钟前
8R60d8完成签到,获得积分0
2分钟前
lunyu完成签到 ,获得积分10
2分钟前
坚强志泽完成签到 ,获得积分10
3分钟前
俊逸的白梦完成签到 ,获得积分10
3分钟前
橘子海完成签到 ,获得积分10
3分钟前
Tianju完成签到,获得积分10
3分钟前
研友_Lmg1gZ完成签到,获得积分10
3分钟前
huazhangchina完成签到 ,获得积分10
3分钟前
高雯完成签到,获得积分10
3分钟前
芝诺的乌龟完成签到 ,获得积分0
3分钟前
张颖完成签到 ,获得积分10
3分钟前
欢呼的茗茗完成签到 ,获得积分10
3分钟前
丹妮完成签到 ,获得积分10
3分钟前
4分钟前
longlonglong完成签到,获得积分10
4分钟前
4分钟前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052644
求助须知:如何正确求助?哪些是违规求助? 2709863
关于积分的说明 7418252
捐赠科研通 2354395
什么是DOI,文献DOI怎么找? 1246007
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921