Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review

土地覆盖 科恩卡帕 人工智能 计算机科学 支持向量机 随机森林 机器学习 马氏距离 卡帕 模式识别(心理学) 遥感 数学 土地利用 地理 土木工程 工程类 几何学
作者
Swapan Talukdar,Pankaj Singha,Susanta Mahato,Shahfahad,Swades Pal,Yuei‐An Liou,Atiqur Rahman
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:12 (7): 1135-1135 被引量:893
标识
DOI:10.3390/rs12071135
摘要

Rapid and uncontrolled population growth along with economic and industrial development, especially in developing countries during the late twentieth and early twenty-first centuries, have increased the rate of land-use/land-cover (LULC) change many times. Since quantitative assessment of changes in LULC is one of the most efficient means to understand and manage the land transformation, there is a need to examine the accuracy of different algorithms for LULC mapping in order to identify the best classifier for further applications of earth observations. In this article, six machine-learning algorithms, namely random forest (RF), support vector machine (SVM), artificial neural network (ANN), fuzzy adaptive resonance theory-supervised predictive mapping (Fuzzy ARTMAP), spectral angle mapper (SAM) and Mahalanobis distance (MD) were examined. Accuracy assessment was performed by using Kappa coefficient, receiver operational curve (RoC), index-based validation and root mean square error (RMSE). Results of Kappa coefficient show that all the classifiers have a similar accuracy level with minor variation, but the RF algorithm has the highest accuracy of 0.89 and the MD algorithm (parametric classifier) has the least accuracy of 0.82. In addition, the index-based LULC and visual cross-validation show that the RF algorithm (correlations between RF and normalised differentiation water index, normalised differentiation vegetation index and normalised differentiation built-up index are 0.96, 0.99 and 1, respectively, at 0.05 level of significance) has the highest accuracy level in comparison to the other classifiers adopted. Findings from the literature also proved that ANN and RF algorithms are the best LULC classifiers, although a non-parametric classifier like SAM (Kappa coefficient 0.84; area under curve (AUC) 0.85) has a better and consistent accuracy level than the other machine-learning algorithms. Finally, this review concludes that the RF algorithm is the best machine-learning LULC classifier, among the six examined algorithms although it is necessary to further test the RF algorithm in different morphoclimatic conditions in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunlty完成签到,获得积分10
1秒前
没头脑和不高兴完成签到 ,获得积分10
2秒前
英姑应助callmefather采纳,获得10
3秒前
4秒前
科研通AI5应助KYT采纳,获得10
4秒前
张孟翰完成签到,获得积分20
4秒前
SYLH应助鬼鬼的眼睛采纳,获得10
5秒前
5秒前
别发呆快学习完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
10秒前
10秒前
11秒前
大个应助成就的凌旋采纳,获得10
12秒前
豆豆豆豆完成签到,获得积分10
12秒前
13秒前
lab发布了新的文献求助10
14秒前
李爱国应助天台飞船采纳,获得10
14秒前
英俊的铭应助Rainielove0215采纳,获得10
14秒前
核桃发布了新的文献求助10
15秒前
天天快乐应助愤怒的寻芹采纳,获得30
15秒前
祝贺盒子发布了新的文献求助10
15秒前
豆豆豆豆发布了新的文献求助10
16秒前
17秒前
我爱猪猪完成签到,获得积分20
18秒前
KYT发布了新的文献求助10
19秒前
萝卜爱吃葡萄皮完成签到 ,获得积分10
19秒前
小二郎应助听风轻语采纳,获得10
19秒前
20秒前
风枞完成签到 ,获得积分10
20秒前
hyx完成签到 ,获得积分10
20秒前
21秒前
callmefather发布了新的文献求助10
22秒前
22秒前
22秒前
ww123完成签到,获得积分10
23秒前
美好斓发布了新的文献求助30
24秒前
24秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867343
求助须知:如何正确求助?哪些是违规求助? 3409640
关于积分的说明 10664507
捐赠科研通 3133927
什么是DOI,文献DOI怎么找? 1728591
邀请新用户注册赠送积分活动 833038
科研通“疑难数据库(出版商)”最低求助积分说明 780517