Explainable Machine Learning Model for Predicting GI Bleed Mortality in the Intensive Care Unit

医学 重症监护室 置信区间 接收机工作特性 曲线下面积 流血 重症监护 急诊医学 重症监护医学 机器学习 内科学 外科 计算机科学
作者
Farah Deshmukh,Shamel S. Merchant
出处
期刊:The American Journal of Gastroenterology [Lippincott Williams & Wilkins]
卷期号:115 (10): 1657-1668 被引量:61
标识
DOI:10.14309/ajg.0000000000000632
摘要

INTRODUCTION: Acute gastrointestinal (GI) bleed is a common reason for hospitalization with 2%–10% risk of mortality. In this study, we developed a machine learning (ML) model to calculate the risk of mortality in intensive care unit patients admitted for GI bleed and compared it with APACHE IVa risk score. We used explainable ML methods to provide insight into the model's prediction and outcome. METHODS: We analyzed the patient data in the Electronic Intensive Care Unit Collaborative Research Database and extracted data for 5,691 patients (mean age = 67.4 years; 61% men) admitted with GI bleed. The data were used in training a ML model to identify patients who died in the intensive care unit. We compared the predictive performance of the ML model with the APACHE IVa risk score. Performance was measured by area under receiver operating characteristic curve (AUC) analysis. This study also used explainable ML methods to provide insights into the model's outcome or prediction using the SHAP (SHapley Additive exPlanations) method. RESULTS: The ML model performed better than the APACHE IVa risk score in correctly classifying the low-risk patients. The ML model had a specificity of 27% (95% confidence interval [CI]: 25–36) at a sensitivity of 100% compared with the APACHE IVa score, which had a specificity of 4% (95% CI: 3–31) at a sensitivity of 100%. The model identified patients who died with an AUC of 0.85 (95% CI: 0.80–0.90) in the internal validation set, whereas the APACHE IVa clinical scoring systems identified patients who died with AUC values of 0.80 (95% CI: 0.73–0.86) with P value <0.001. DISCUSSION: We developed a ML model that predicts the mortality in patients with GI bleed with a greater accuracy than the current scoring system. By making the ML model explainable, clinicians would be able to better understand the reasoning behind the outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
山复尔尔完成签到,获得积分10
1秒前
别让我误会完成签到 ,获得积分10
1秒前
悦耳的颜发布了新的文献求助10
2秒前
英姑应助PaoPao采纳,获得10
2秒前
2秒前
2秒前
swh发布了新的文献求助10
2秒前
2秒前
fangjie应助科研通管家采纳,获得10
2秒前
接心软审稿人完成签到 ,获得积分10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
ED应助哈哈哈哈哈采纳,获得10
3秒前
小蘑菇应助哈哈哈哈哈采纳,获得10
3秒前
abcd完成签到,获得积分20
3秒前
Akim应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
摇落月应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得30
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
derrickZ完成签到 ,获得积分10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
李小聪发布了新的文献求助10
4秒前
卡卡西应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
舒适涵山完成签到,获得积分10
4秒前
4秒前
SYLH应助科研通管家采纳,获得10
5秒前
5秒前
Sisyphus应助科研通管家采纳,获得10
5秒前
kingwill应助科研通管家采纳,获得20
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
lml发布了新的文献求助10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812110
求助须知:如何正确求助?哪些是违规求助? 3356551
关于积分的说明 10382609
捐赠科研通 3073683
什么是DOI,文献DOI怎么找? 1688394
邀请新用户注册赠送积分活动 812128
科研通“疑难数据库(出版商)”最低求助积分说明 766960