亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainable Machine Learning Model for Predicting GI Bleed Mortality in the Intensive Care Unit

医学 重症监护室 置信区间 接收机工作特性 曲线下面积 流血 重症监护 急诊医学 重症监护医学 机器学习 内科学 外科 计算机科学
作者
Farah Deshmukh,Shamel S. Merchant
出处
期刊:The American Journal of Gastroenterology [American College of Gastroenterology]
卷期号:115 (10): 1657-1668 被引量:90
标识
DOI:10.14309/ajg.0000000000000632
摘要

INTRODUCTION: Acute gastrointestinal (GI) bleed is a common reason for hospitalization with 2%–10% risk of mortality. In this study, we developed a machine learning (ML) model to calculate the risk of mortality in intensive care unit patients admitted for GI bleed and compared it with APACHE IVa risk score. We used explainable ML methods to provide insight into the model's prediction and outcome. METHODS: We analyzed the patient data in the Electronic Intensive Care Unit Collaborative Research Database and extracted data for 5,691 patients (mean age = 67.4 years; 61% men) admitted with GI bleed. The data were used in training a ML model to identify patients who died in the intensive care unit. We compared the predictive performance of the ML model with the APACHE IVa risk score. Performance was measured by area under receiver operating characteristic curve (AUC) analysis. This study also used explainable ML methods to provide insights into the model's outcome or prediction using the SHAP (SHapley Additive exPlanations) method. RESULTS: The ML model performed better than the APACHE IVa risk score in correctly classifying the low-risk patients. The ML model had a specificity of 27% (95% confidence interval [CI]: 25–36) at a sensitivity of 100% compared with the APACHE IVa score, which had a specificity of 4% (95% CI: 3–31) at a sensitivity of 100%. The model identified patients who died with an AUC of 0.85 (95% CI: 0.80–0.90) in the internal validation set, whereas the APACHE IVa clinical scoring systems identified patients who died with AUC values of 0.80 (95% CI: 0.73–0.86) with P value <0.001. DISCUSSION: We developed a ML model that predicts the mortality in patients with GI bleed with a greater accuracy than the current scoring system. By making the ML model explainable, clinicians would be able to better understand the reasoning behind the outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
上官若男应助张宇采纳,获得10
3秒前
我是老大应助dew采纳,获得10
4秒前
郝誉发布了新的文献求助10
5秒前
10秒前
科研通AI6应助serein采纳,获得10
12秒前
12秒前
张宇发布了新的文献求助10
15秒前
22秒前
陳.发布了新的文献求助10
34秒前
田様应助微笑的弧度采纳,获得10
36秒前
37秒前
40秒前
41秒前
俭朴蜜蜂完成签到 ,获得积分10
48秒前
SAIL完成签到 ,获得积分10
49秒前
52秒前
yujie完成签到 ,获得积分10
52秒前
FashionBoy应助Shawn_54采纳,获得10
56秒前
今晚早点睡完成签到,获得积分10
1分钟前
1分钟前
Cherry发布了新的文献求助10
1分钟前
dyyy发布了新的文献求助10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
dew发布了新的文献求助10
1分钟前
激动的鹰发布了新的文献求助10
1分钟前
淡淡的无敌完成签到 ,获得积分10
1分钟前
激动的鹰完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502807
求助须知:如何正确求助?哪些是违规求助? 4598519
关于积分的说明 14464322
捐赠科研通 4532126
什么是DOI,文献DOI怎么找? 2483850
邀请新用户注册赠送积分活动 1467039
关于科研通互助平台的介绍 1439707