歧管(流体力学)
机器人学
最优化问题
障碍物
机器人
公制(单位)
计算机科学
黎曼流形
功能(生物学)
避障
数学优化
领域(数学)
弹道
人工智能
运动规划
统计流形
数学
移动机器人
信息几何学
纯数学
工程类
几何学
运营管理
曲率
法学
生物
进化生物学
政治学
机械工程
物理
标量曲率
天文
作者
Michael Watterson,Sikang Liu,Ke Sun,Trey Smith,Vijay Kumar
标识
DOI:10.1177/0278364919891775
摘要
Manifolds are used in almost all robotics applications even if they are not modeled explicitly. We propose a differential geometric approach for optimizing trajectories on a Riemannian manifold with obstacles. The optimization problem depends on a metric and collision function specific to a manifold. We then propose our safe corridor on manifolds (SCM) method of computationally optimizing trajectories for robotics applications via a constrained optimization problem. Our method does not need equality constraints, which eliminates the need to project back to a feasible manifold during optimization. We then demonstrate how this algorithm works on an example problem on [Formula: see text] and a perception-aware planning example for visual–inertially guided robots navigating in three dimensions. Formulating field of view constraints naturally results in modeling with the manifold [Formula: see text], which cannot be modeled as a Lie group. We also demonstrate the example of planning trajectories on [Formula: see text] for a formation of quadrotors within an obstacle filled environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI