Deep learning based intelligence cognitive vision drone for automatic plant diseases identification and spraying

计算机科学 无人机 云计算 农业 过程(计算) 精准农业 人工智能 深度学习 建筑 地理 操作系统 遗传学 生物 考古
作者
Ghazanfar Latif,Jaafar Alghazo,R. Maheswar,V. Vijayakumar,Muhammad Mohsin Butt
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:39 (6): 8103-8114 被引量:17
标识
DOI:10.3233/jifs-189132
摘要

The agriculture industry is of great importance in many countries and plays a considerable role in the national budget. Also, there is an increased interest in plantation and its effect on the environment. With vast areas suitable for farming, countries are always encouraging farmers through various programs to increase national farming production. However, the vast areas and large farms make it difficult for farmers and workers to continually monitor these broad areas to protect the plants from diseases and various weather conditions. A new concept dubbed Precision Farming has recently surfaced in which the latest technologies play an integral role in the farming process. In this paper, we propose a SMART Drone system equipped with high precision cameras, high computing power with proposed image processing methodologies, and connectivity for precision farming. The SMART system will automatically monitor vast farming areas with precision, identify infected plants, decide on the chemical and exact amount to spray. Besides, the system is connected to the cloud server for sending the images so that the cloud system can generate reports, including prediction on crop yield. The system is equipped with a user-friendly Human Computer Interface (HCI) for communication with the farm base. This multidrone system can process vast areas of farmland daily. The Image processing technique proposed in this paper is a modified ResNet architecture. The system is compared with deep CNN architecture and other machine learning based systems. The ResNet architecture achieves the highest average accuracy of 99.78% on a dataset consisting of 70,295 leaf images for 26 different diseases of 14 plants. The results obtained were compared with the CNN results applied in this paper and other similar techniques in previous literature. The comparisons indicate that the proposed ResNet architecture performs better compared to other similar techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尘染完成签到 ,获得积分10
1秒前
5秒前
wanna完成签到,获得积分10
5秒前
10秒前
海派Hi完成签到 ,获得积分10
11秒前
王南晰完成签到 ,获得积分10
11秒前
qianci2009完成签到,获得积分10
12秒前
受伤问凝完成签到 ,获得积分10
20秒前
22秒前
小孙孙完成签到 ,获得积分10
22秒前
27秒前
30秒前
xxiao完成签到 ,获得积分10
30秒前
tmobiusx完成签到,获得积分10
39秒前
花花完成签到,获得积分10
54秒前
任性翠安完成签到 ,获得积分10
57秒前
时尚的冰棍儿完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
Lea完成签到,获得积分10
1分钟前
南风完成签到 ,获得积分10
1分钟前
Lea发布了新的文献求助10
1分钟前
nine2652完成签到 ,获得积分10
1分钟前
ycool完成签到 ,获得积分10
1分钟前
独特的高山完成签到 ,获得积分10
1分钟前
荼白完成签到 ,获得积分10
1分钟前
smz完成签到 ,获得积分10
1分钟前
火星上书琴完成签到 ,获得积分10
1分钟前
轻歌水越完成签到 ,获得积分10
1分钟前
1分钟前
传奇完成签到 ,获得积分10
1分钟前
QQ糖完成签到 ,获得积分10
1分钟前
1分钟前
lilylwy完成签到 ,获得积分0
1分钟前
哈哈我完成签到,获得积分10
1分钟前
依依完成签到,获得积分10
1分钟前
zhuguli完成签到,获得积分10
2分钟前
2分钟前
NexusExplorer应助Zzzzz采纳,获得10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780879
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226694
捐赠科研通 3041539
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758732