Machine learning based strategy surpasses the traditional method for selecting the first trial Lens parameters for corneal refractive therapy in Chinese adolescents with myopia

角膜塑形术 偏心率(行为) 散光 人工智能 机器学习 眼科 折射 线性回归 角膜地形图 数学 算法 计算机科学 验光服务 角膜 医学 光学 物理 法学 政治学
作者
Yuzhuo Fan,Zekuan Yu,Zisu Peng,Qiong Xu,Tao Tang,Kai Wang,Qiushi Ren,Mingwei Zhao,Jia Qu
出处
期刊:Contact Lens and Anterior Eye [Elsevier]
卷期号:44 (3): 101330-101330 被引量:17
标识
DOI:10.1016/j.clae.2020.05.001
摘要

Purpose Return zone depth (RZD) and landing zone angle (LZA) are important parameters of corneal refractive therapy (CRT) lenses. A new machine learning algorithm is proposed for prescribing CRT lens parameters in Chinese adolescents with myopia. Methods This is a retrospective study. In total, 1037 Chinese adolescents with myopia (1037 right eyes) were enrolled. A calculation model based on corneal elevation maps was constructed to calculate RZD and LZA for the four quadrants. Furthermore, multiple linear regression and optimized machine learning models were established to predict RZD and LZA values for different combinations of age, sex, and ocular parameters. The four methods (sliding card, linear regression, calculation and optimized machine learning) were then compared to the parameters of the final ordered lens. Results The optimized machine learning pipeline achieved the best performance. Age, sex, horizontal visible iris diameter (HVID), spherical equivalent refraction degree (SER), eccentricity (e), keratometric (K) readings, corneal astigmatism (CA), axial length (AL), AL/corneal curvature ratio (AL/MK), and anterior chamber depth (ACD) were significant to the machine learning model. The R values for the nasal, temporal, superior and inferior LZA based on machine learning were 0.843, 0.693, 0.866 and 0.762, respectively, and those for the RZD were 0.970, 0.964, 0.975 and 0.964, respectively. Conclusions The feasibility and efficiency of an optimized machine learning method to predict LZA and RZD parameters has been demonstrated. The advantage of the proposed method is that it is more accurate, easier to use and faster to implement than the traditional sliding card method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沅芷完成签到,获得积分10
1秒前
平淡纸飞机完成签到 ,获得积分10
1秒前
茶叶蛋完成签到,获得积分10
1秒前
嘀哩嘀哩发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
Star发布了新的文献求助10
3秒前
田様应助Mona采纳,获得10
3秒前
云影cns完成签到 ,获得积分10
4秒前
bk201完成签到,获得积分10
4秒前
mou发布了新的文献求助10
4秒前
5秒前
咻咻驳回了桐桐应助
5秒前
5秒前
5秒前
6秒前
今后应助落寞凌柏采纳,获得10
6秒前
7秒前
上的工人进场完成签到,获得积分10
8秒前
日尧发布了新的文献求助10
9秒前
9秒前
9秒前
Orange应助文文采纳,获得10
9秒前
拉萌发布了新的文献求助10
10秒前
muna发布了新的文献求助10
10秒前
10秒前
不爱吃香菜完成签到,获得积分10
10秒前
可爱的函函应助吴彦祖采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
ZQ2415719完成签到,获得积分10
14秒前
好运6连发布了新的文献求助30
14秒前
潇淼发布了新的文献求助10
14秒前
不爱吃香菜发布了新的文献求助100
15秒前
签儿儿儿发布了新的文献求助10
15秒前
A徽发布了新的文献求助10
15秒前
今天放假了吗完成签到,获得积分10
16秒前
日尧完成签到,获得积分10
16秒前
烟花应助HZ采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490427
求助须知:如何正确求助?哪些是违规求助? 4588992
关于积分的说明 14422782
捐赠科研通 4520985
什么是DOI,文献DOI怎么找? 2477064
邀请新用户注册赠送积分活动 1462460
关于科研通互助平台的介绍 1435280