亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A scoping review of transfer learning research on medical image analysis using ImageNet

计算机科学 卷积神经网络 人工智能 学习迁移 光学相干层析成像 可视化 机器学习 深度学习 模式识别(心理学) 医学物理学 放射科 医学
作者
Mohammad Amin Morid,Alireza Borjali,Guilherme Del Fiol
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:128: 104115-104115 被引量:372
标识
DOI:10.1016/j.compbiomed.2020.104115
摘要

Objective: Employing transfer learning (TL) with convolutional neural networks (CNNs), well-trained on non-medical ImageNet dataset, has shown promising results for medical image analysis in recent years. We aimed to conduct a scoping review to identify these studies and summarize their characteristics in terms of the problem description, input, methodology, and outcome. Materials and Methods: To identify relevant studies, MEDLINE, IEEE, and ACM digital library were searched. Two investigators independently reviewed articles to determine eligibility and to extract data according to a study protocol defined a priori. Results: After screening of 8,421 articles, 102 met the inclusion criteria. Of 22 anatomical areas, eye (18%), breast (14%), and brain (12%) were the most commonly studied. Data augmentation was performed in 72% of fine-tuning TL studies versus 15% of the feature-extracting TL studies. Inception models were the most commonly used in breast related studies (50%), while VGGNet was the common in eye (44%), skin (50%) and tooth (57%) studies. AlexNet for brain (42%) and DenseNet for lung studies (38%) were the most frequently used models. Inception models were the most frequently used for studies that analyzed ultrasound (55%), endoscopy (57%), and skeletal system X-rays (57%). VGGNet was the most common for fundus (42%) and optical coherence tomography images (50%). AlexNet was the most frequent model for brain MRIs (36%) and breast X-Rays (50%). 35% of the studies compared their model with other well-trained CNN models and 33% of them provided visualization for interpretation. Discussion: This study identified the most prevalent tracks of implementation in the literature for data preparation, methodology selection and output evaluation for medical image analysis. Also, we identified several critical research gaps existing in the TL studies on medical image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
16秒前
22秒前
27秒前
28秒前
34秒前
35秒前
40秒前
荷兰香猪完成签到,获得积分10
47秒前
48秒前
Ava应助成就的笑翠采纳,获得10
49秒前
无花果应助曲奇不甜采纳,获得10
53秒前
reeeveb发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
reeeveb完成签到,获得积分10
1分钟前
wuju完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Orange应助成就的笑翠采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
不安青牛举报藤皇蛇求助涉嫌违规
2分钟前
lixuebin完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
白羽完成签到 ,获得积分10
3分钟前
努力努力再努力完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
CodeCraft应助白羽采纳,获得10
4分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124466
求助须知:如何正确求助?哪些是违规求助? 3662372
关于积分的说明 11590322
捐赠科研通 3362598
什么是DOI,文献DOI怎么找? 1847690
邀请新用户注册赠送积分活动 912036
科研通“疑难数据库(出版商)”最低求助积分说明 827849