清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme

无线电技术 医学 胶质母细胞瘤 磁共振成像 分类器(UML) 放射科 肿瘤科 病理 计算机科学 人工智能 癌症研究
作者
Xin Chen,Mengjie Fang,Di Dong,Lingling Liu,Xiangdong Xu,Xinhua Wei,Xinqing Jiang,Lei Qin,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:26 (10): 1292-1300 被引量:36
标识
DOI:10.1016/j.acra.2018.12.016
摘要

Rationale and Objectives Glioblastoma multiforme (GBM) is the most common and deadly type of primary malignant tumor of the central nervous system. Accurate risk stratification is vital for a more personalized approach in GBM management. The purpose of this study is to develop and validate a MRI-based prognostic quantitative radiomics classifier in patients with newly diagnosed GBM and to evaluate whether the classifier allows stratification with improved accuracy over the clinical and qualitative imaging features risk models. Methods Clinical and MR imaging data of 127 GBM patients were obtained from the Cancer Genome Atlas and the Cancer Imaging Archive. Regions of interest corresponding to high signal intensity portions of tumor were drawn on postcontrast T1-weighted imaging (post-T1WI) on the 127 patients (allocated in a 2:1 ratio into a training [n = 85] or validation [n = 42] set), then 3824 radiomics features per patient were extracted. The dimension of these radiomics features were reduced using the minimum redundancy maximum relevance algorithm, then Cox proportional hazard regression model was used to build a radiomics classifier for predicting overall survival (OS). The value of the radiomics classifier beyond clinical (gender, age, Karnofsky performance status, radiation therapy, chemotherapy, and type of resection) and VASARI features for OS was assessed with multivariate Cox proportional hazards model. Time-dependent receiver operating characteristic curve analysis was used to assess the predictive accuracy. Results A classifier using four post-T1WI-MRI radiomics features built on the training dataset could successfully separate GBM patients into low- or high-risk group with a significantly different OS in training (HR, 6.307 [95% CI, 3.475-11.446]; p Conclusion A classifier using radiomics features allows preoperative prediction of survival and risk stratification of patients with GBM, and it shows improved performance compared to that of clinical and qualitative imaging features models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Beyond095完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
28秒前
浮游应助科研通管家采纳,获得10
38秒前
王一一完成签到,获得积分10
1分钟前
xdc完成签到,获得积分20
1分钟前
xdc发布了新的文献求助10
1分钟前
zxcvvbb1001完成签到 ,获得积分10
1分钟前
automan完成签到 ,获得积分10
1分钟前
xdc发布了新的文献求助10
1分钟前
爆米花应助xdc采纳,获得10
1分钟前
张wx_100完成签到,获得积分10
1分钟前
2分钟前
xdc发布了新的文献求助10
2分钟前
浮游应助xdc采纳,获得10
2分钟前
2分钟前
聪慧千亦发布了新的文献求助10
2分钟前
聪慧千亦完成签到,获得积分10
2分钟前
小静完成签到 ,获得积分10
2分钟前
智者雨人完成签到 ,获得积分10
2分钟前
3分钟前
xiaoxin发布了新的文献求助10
3分钟前
乐乐应助xiaoxin采纳,获得10
3分钟前
xiaoxin完成签到,获得积分10
3分钟前
nojego完成签到,获得积分10
3分钟前
沉沉完成签到 ,获得积分0
3分钟前
自觉香彤完成签到 ,获得积分10
3分钟前
自觉香彤关注了科研通微信公众号
3分钟前
田様应助XIA采纳,获得10
3分钟前
3分钟前
XIA发布了新的文献求助10
4分钟前
4分钟前
yiyayiya发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
V_I_G完成签到 ,获得积分10
4分钟前
Ccc完成签到,获得积分20
5分钟前
5分钟前
avalanche应助Ccc采纳,获得30
5分钟前
无奈的代珊完成签到 ,获得积分10
5分钟前
why完成签到,获得积分10
5分钟前
Something发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463631
求助须知:如何正确求助?哪些是违规求助? 4568187
关于积分的说明 14312580
捐赠科研通 4494275
什么是DOI,文献DOI怎么找? 2462237
邀请新用户注册赠送积分活动 1451134
关于科研通互助平台的介绍 1426544