PCA-RECT: An Energy-Efficient Object Detection Approach for Event Cameras

计算机科学 人工智能 事件(粒子物理) 计算机视觉 降维 特征提取 帧(网络) 特征(语言学) 模式识别(心理学) 帧速率 目标检测 语言学 量子力学 电信 物理 哲学
作者
Bharath Ramesh,Andrés Ussa,Luca Della Vedova,Hong Yang,Garrick Orchard
出处
期刊:Lecture Notes in Computer Science 卷期号:: 434-449 被引量:3
标识
DOI:10.1007/978-3-030-21074-8_35
摘要

We present the first purely event-based, energy-efficient approach for object detection and categorization using an event camera. Compared to traditional frame-based cameras, choosing event cameras results in high temporal resolution (order of microseconds), low power consumption (few hundred mW) and wide dynamic range (120 dB) as attractive properties. However, event-based object recognition systems are far behind their frame-based counterparts in terms of accuracy. To this end, this paper presents an event-based feature extraction method devised by accumulating local activity across the image frame and then applying principal component analysis (PCA) to the normalized neighborhood region. Subsequently, we propose a backtracking-free k-d tree mechanism for efficient feature matching by taking advantage of the low-dimensionality of the feature representation. Additionally, the proposed k-d tree mechanism allows for feature selection to obtain a lower-dimensional dictionary representation when hardware resources are limited to implement dimensionality reduction. Consequently, the proposed system can be realized on a field-programmable gate array (FPGA) device leading to high performance over resource ratio. The proposed system is tested on real-world event-based datasets for object categorization, showing superior classification performance and relevance to state-of-the-art algorithms. Additionally, we verified the object detection method and real-time FPGA performance in lab settings under non-controlled illumination conditions with limited training data and ground truth annotations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
99完成签到,获得积分10
3秒前
祁闲蒽发布了新的文献求助20
5秒前
花开富贵完成签到,获得积分10
6秒前
wanci应助研友_8YKe5n采纳,获得10
6秒前
科研通AI5应助111采纳,获得10
6秒前
9秒前
lcj完成签到,获得积分10
12秒前
四福祥发布了新的文献求助10
14秒前
希拉里罗德姆完成签到 ,获得积分10
17秒前
xx完成签到,获得积分10
17秒前
沉静的浩然完成签到,获得积分10
17秒前
22秒前
阳佟冬卉完成签到,获得积分10
24秒前
Rue完成签到,获得积分10
25秒前
osel发布了新的文献求助30
25秒前
lewu完成签到 ,获得积分10
27秒前
holi完成签到 ,获得积分10
27秒前
29秒前
Hello应助pan采纳,获得10
29秒前
slb1319完成签到,获得积分10
31秒前
xxh完成签到,获得积分10
31秒前
畅快代柔完成签到 ,获得积分10
32秒前
钟婷婷发布了新的文献求助30
32秒前
littleyiiiii完成签到,获得积分10
34秒前
舒克完成签到,获得积分10
34秒前
orixero应助Raine采纳,获得10
35秒前
35秒前
李爱国应助xxx采纳,获得10
35秒前
微笑的靖易完成签到,获得积分10
37秒前
37秒前
宝福X暴富完成签到,获得积分10
38秒前
斯人如机完成签到 ,获得积分10
38秒前
Akim应助呆萌芙蓉采纳,获得10
39秒前
liming完成签到,获得积分20
41秒前
41秒前
42秒前
43秒前
小二郎应助北风语采纳,获得10
43秒前
Azhou完成签到,获得积分10
44秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808961
求助须知:如何正确求助?哪些是违规求助? 3353681
关于积分的说明 10366466
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810750
科研通“疑难数据库(出版商)”最低求助积分说明 766320