已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling Winter Wheat Leaf Area Index and Canopy Water Content With Three Different Approaches Using Sentinel-2 Multispectral Instrument Data

叶面积指数 均方误差 多光谱图像 遥感 天蓬 数学 查阅表格 决定系数 多光谱模式识别 环境科学 统计 计算机科学 地理 农学 生物 考古 程序设计语言
作者
Haizhu Pan,Zhongxin Chen,Jianqiang Ren,He Li,Shangrong Wu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (2): 482-492 被引量:48
标识
DOI:10.1109/jstars.2018.2855564
摘要

Leaf area index (LAI) and canopy water content (CWC) are important variables for monitoring crop growth and drought, which can be estimated from remotely sensed data. The goal of this study was to evaluate the suitability of the Sentinel-2 multispectral instrument (S2 MSI) data for winter wheat LAI and CWC estimation with three different inversion approaches in the main farming region in North China. During the winter wheat key growth stages in 2017, 22 fields, each with five independent samples, the total number of sample plot is 110, were designed for experimental measurements. In this study, the LAI and CWC were retrieved separately using empirical models through different spectral indices, neural network (NN) algorithms, and lookup table (LUT) methods based on the PROSAIL model. The accuracies of the estimated LAI and CWC were assessed through in situ measurements. The results show that the LUT inversion approach was more suitable for LAI and CWC estimation than the spectral index-based empirical model or the NN algorithm. With the LUT approach, LAI was obtained with a root mean square error (RMSE) of 0.43 m 2 ·m -2 and a relative RMSE (RRMSE) of 11% using seven S2 MSI bands, and CWC was obtained with an RMSE of 0.41 kg·m -2 , and an RRMSE of 32% using five S2 MSI bands. In all the three methods, S2 MSI was sensitive to LAI variation and able to reach higher accuracies when red edge bands were used. However, CWC inversion was still a challenge using S2 MSI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Criminology34给xiexie的求助进行了留言
2秒前
3秒前
我是老大应助lilliu采纳,获得10
3秒前
FashionBoy应助Trey采纳,获得10
4秒前
科研通AI6应助缓慢弼采纳,获得10
4秒前
诱导效应发布了新的文献求助10
5秒前
酷波er应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得30
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
8秒前
斧王应助666采纳,获得10
8秒前
朴实子骞完成签到 ,获得积分10
10秒前
10秒前
诱导效应完成签到,获得积分10
12秒前
孟冬完成签到 ,获得积分10
12秒前
彭于晏应助斯文的面包采纳,获得10
12秒前
今天完成签到,获得积分10
14秒前
16秒前
小鱼马完成签到,获得积分10
18秒前
haohaohao发布了新的文献求助10
19秒前
藤井树发布了新的文献求助10
19秒前
生动路人发布了新的文献求助20
20秒前
Darcy发布了新的文献求助100
21秒前
24秒前
小透明发布了新的文献求助10
25秒前
黑煤球发布了新的文献求助20
26秒前
27秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401052
求助须知:如何正确求助?哪些是违规求助? 4520107
关于积分的说明 14078072
捐赠科研通 4432959
什么是DOI,文献DOI怎么找? 2433946
邀请新用户注册赠送积分活动 1426122
关于科研通互助平台的介绍 1404738