数学
最优控制
残余物
非线性系统
数学优化
表达式(计算机科学)
平均加权残差法
趋同(经济学)
代数方程
搭配(遥感)
选择(遗传算法)
应用数学
财产(哲学)
梯度法
梯度下降
控制理论(社会学)
控制(管理)
计算机科学
伽辽金法
算法
人工神经网络
机器学习
物理
经济增长
哲学
认识论
人工智能
经济
量子力学
程序设计语言
作者
Feng‐Sheng Wang,Ji-Pyng Chiou
标识
DOI:10.1080/03052159708941136
摘要
Abstract An efficient method is described for handling the optimal control and optimal parameter selection problems of nonlinear dynamic systems involving equality and inequality algebraic constraints. The approximation of the optimal control problems is based on weighted residual approaches, but the residual equation is redefined based on the integral expression of the dynamic equations of the optimization problems. As a result, additional equality constraints for enforcing the continuity of the state variables at element boundaries are not required so that the approximate equations obtained by this collocation method can be unified into a compact expression. A modified reduced gradient method is then introduced toward determining the optimal solution of the approximate problem. The descent property of this partial feasible direction algorithm is proved in this study such that global convergence can be guaranteed. Keywords: Dynamic optimizationcollocation methodnonlinear programmingreduced gradient methodnonlinear systemsoptimal control
科研通智能强力驱动
Strongly Powered by AbleSci AI