体内分布
磁共振成像
体内
纳米壳
光热治疗
化学
核磁共振
辐照
生物物理学
生物医学工程
纳米颗粒
材料科学
体外
纳米技术
放射科
医学
生物技术
核物理学
物理
生物
生物化学
作者
Marites P. Melancon,Andrew M. Elliott,Xiaojun Ji,Anil Shetty,Zhi Yang,Mei Tian,Brian Taylor,R. Jason Stafford,Chun Li
标识
DOI:10.1097/rli.0b013e3181f8e7d8
摘要
Objectives: To investigate the multifunctional imaging and therapeutic capabilities of core-shell nanoparticles composed of a superparamagnetic iron oxide (SPIO) core and a gold shell (SPIO@AuNS). Materials and Methods: The magnetic/optical properties of SPIO@AuNS were examined both in an agar gel phantom and in vivo by evaluating contrast-enhanced magnetic resonance imaging (MRI) and by measuring near-infrared (NIR) light-induced temperature changes mediated by SPIO@AuNS. In addition, the biodistribution and pharmacokinetics of 111In-labeled SPIO@AuNS after intravenous injection in mice bearing A431 tumors were evaluated in the presence and absence of an external magnet. Results: In agar phantoms containing SPIO@AuNS, a significant contrast enhancement in T2-weighted MRI was observed and a linear increase in temperature was observed with increasing concentration and laser output power when irradiated with NIR light centered at an 808 nm. In vivo, T2*-MRI delineated SPIO@AuNS and magnetic resonance temperature imaging of the same tumors revealed significant temperature elevations when intratumorally injected with SPIO@AuNS (1 × 1011 particles/mouse) and irradiated with NIR light (65.70°C ± 0.69°C vs. 44.23°C ± 0.24°C for saline + laser). Biodistribution studies in mice intravenously injected with 111In-labeled-SPIO@AuNS(1 × 1013 particles/mouse) had an approximately 2-fold increase in SPIO@AuNS delivered into tumors in the presence of an external magnet compared with tumors without the magnet. Conclusions: Owing to its ability to mediate efficient photothermal ablation of cancer cells under MRI guidance, as well as the ability to be directed to solid tumors with an external magnetic field gradient, multifunctional SPIO@AuNS is a promising theranostic nanoplatform.
科研通智能强力驱动
Strongly Powered by AbleSci AI