清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Network modelling methods for FMRI

计算机科学 协方差 人工智能 数据挖掘 贝叶斯定理 机器学习 灵敏度(控制系统) 相关性 模式识别(心理学) 时间序列 航程(航空) 贝叶斯概率 统计 数学 几何学 电子工程 工程类 材料科学 复合材料
作者
Stephen M. Smith,Karla L. Miller,Gholamreza Salimi‐Khorshidi,Matthew Webster,Christian F. Beckmann,Thomas E. Nichols,Joseph D. Ramsey,Mark W. Woolrich
出处
期刊:NeuroImage [Elsevier BV]
卷期号:54 (2): 875-891 被引量:1633
标识
DOI:10.1016/j.neuroimage.2010.08.063
摘要

There is great interest in estimating brain “networks” from FMRI data. This is often attempted by identifying a set of functional “nodes” (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to sophisticated approaches that consider all nodes simultaneously and estimate one global network model (e.g., Bayes net models). Many different methods are being used in the literature, but almost none has been carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic confounds in the data, in order to compare different connectivity estimation approaches. Our results show that in general correlation-based approaches can be quite successful, methods based on higher-order statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular, partial correlation, regularised inverse covariance estimation and several Bayes net methods; however, accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably successful. With respect to the various confounds added to the data, the most striking result was that the use of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries) is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such as via structural atlases) should be regarded with great caution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害羞便当完成签到 ,获得积分10
1秒前
9秒前
16秒前
Krim完成签到 ,获得积分10
24秒前
FloppyWow完成签到 ,获得积分10
56秒前
earthai完成签到,获得积分10
1分钟前
万能图书馆应助湖里采纳,获得10
1分钟前
芝麻汤圆完成签到,获得积分10
1分钟前
自然之水完成签到,获得积分10
1分钟前
merrylake完成签到 ,获得积分10
1分钟前
hongt05完成签到 ,获得积分10
2分钟前
随影相伴完成签到 ,获得积分10
2分钟前
搜集达人应助xuuu采纳,获得30
2分钟前
随心所欲完成签到 ,获得积分10
2分钟前
2分钟前
磊大彪完成签到 ,获得积分10
3分钟前
iwsaml发布了新的文献求助10
3分钟前
3分钟前
xuuu发布了新的文献求助30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
沉默的友安完成签到 ,获得积分10
4分钟前
vbnn完成签到 ,获得积分10
4分钟前
Microgan完成签到,获得积分10
5分钟前
5分钟前
周萌完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
蜂蜜不是糖完成签到 ,获得积分10
6分钟前
6分钟前
呆呆的猕猴桃完成签到 ,获得积分10
7分钟前
zhentg完成签到,获得积分10
7分钟前
杪夏二八完成签到 ,获得积分10
7分钟前
7分钟前
研友_nxw2xL完成签到,获得积分10
7分钟前
muriel完成签到,获得积分10
7分钟前
foyefeng完成签到 ,获得积分0
8分钟前
汶南完成签到 ,获得积分10
8分钟前
自由的中蓝完成签到 ,获得积分10
8分钟前
陈同学完成签到 ,获得积分10
9分钟前
9分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815862
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402354
捐赠科研通 3077196
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743