亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Two-Dimensional Correlation Spectroscopy (2D-COS) Variable Selection for Near-Infrared Microscopy Discrimination of Meat and Bone Meal in Compound Feed

红外光谱学 光谱学 红外线的 红外显微镜 显微镜 化学 傅里叶变换红外光谱 材料科学 分析化学(期刊) 结晶学 光学 物理 色谱法 有机化学 量子力学
作者
Chengxu Lü,Longjian Chen,Zengling Yang,Xian Liu,Lujia Han
出处
期刊:Applied Spectroscopy [SAGE Publishing]
卷期号:68 (8): 844-851 被引量:7
标识
DOI:10.1366/13-07370
摘要

This article presents a novel method for combining auto-peak and cross-peak information for sensitive variable selection in synchronous two-dimensional correlation spectroscopy (2D-COS). This variable selection method is then applied to the case of near-infrared (NIR) microscopy discrimination of meat and bone meal (MBM). This is of important practical value because MBM is currently banned in ruminate animal compound feed. For the 2D-COS analysis, a set of NIR spectroscopy data of compound feed samples (adulterated with varying concentrations of MBM) was pretreated using standard normal variate and detrending (SNVD) and then mapped to the 2D-COS synchronous matrix. For the auto-peak analysis, 12 main sensitive variables were identified at 6852, 6388, 6320, 5788, 5600, 5244, 4900, 4768, 4572, 4336, 4256, and 4192 cm −1 . All these variables were assigned their specific spectral structure and chemical component. For the cross-peak analysis, these variables were divided into two groups, each group containing the six sensitive variables. This grouping resulted in a correlation between the spectral variables that was in accordance with the chemical-component content of the MBM and compound feed. These sensitive variables were then used to build a NIR microscopy discrimination model, which yielded a 97% correct classification. Moreover, this method detected the presence of MBM when its concentration was less than 1% in an adulterated compound feed sample. The concentration-dependent 2D-COS-based variable selection method developed in this study has the unique advantages of (1) introducing an interpretive aspect into variable selection, (2) substantially reducing the complexity of the computations, (3) enabling the transferability of the results to discriminant analysis, and (4) enabling the efficient compression of spectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
8秒前
zczc0119发布了新的文献求助10
11秒前
吃了吃了完成签到,获得积分10
21秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
科研通AI2S应助祝小鱼采纳,获得10
31秒前
量子星尘发布了新的文献求助50
34秒前
35秒前
粥粥sqk发布了新的文献求助10
39秒前
我是老大应助耶耶耶采纳,获得30
40秒前
40秒前
Jemezs发布了新的文献求助10
46秒前
打打应助祝小鱼采纳,获得10
48秒前
51秒前
七七完成签到,获得积分10
57秒前
lulululululu发布了新的文献求助10
57秒前
星辰大海应助认真的访梦采纳,获得10
1分钟前
lulululululu完成签到,获得积分10
1分钟前
1分钟前
柿饼完成签到,获得积分10
1分钟前
冷静的若冰完成签到 ,获得积分20
1分钟前
浮游应助oleskarabach采纳,获得10
1分钟前
深情安青应助何江龙采纳,获得10
1分钟前
火星上友易完成签到,获得积分10
1分钟前
852应助祝小鱼采纳,获得10
1分钟前
kukudou2完成签到,获得积分20
1分钟前
酒渡完成签到,获得积分10
1分钟前
zczc0119完成签到 ,获得积分10
1分钟前
粥粥sqk发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
天天快乐应助哈哈采纳,获得10
2分钟前
2分钟前
英勇兔子完成签到 ,获得积分10
2分钟前
树洞发布了新的文献求助10
2分钟前
2分钟前
王津丹完成签到,获得积分10
2分钟前
SciGPT应助树洞采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926111
求助须知:如何正确求助?哪些是违规求助? 4196090
关于积分的说明 13031728
捐赠科研通 3967874
什么是DOI,文献DOI怎么找? 2174772
邀请新用户注册赠送积分活动 1191930
关于科研通互助平台的介绍 1101939