Crop phenology date estimation based on NDVI derived from the reconstructed MODIS daily surface reflectance data

物候学 平滑的 归一化差异植被指数 遥感 土地覆盖 插值(计算机图形学) 数学 环境科学 计算机科学 统计 气候变化 地理 人工智能 土地利用 生态学 运动(物理) 生物
作者
Hu Zhao,Zhengwei Yang,Liping Di,Li Lin,Haihong Zhu
标识
DOI:10.1109/geoinformatics.2009.5293522
摘要

Crop phenological stage estimation based on remote sensing data is critical for evaluating crop progress, condition and crop yield. However, the coarse spatial and temporal resolutions of multi-day composited data products limit the phenology estimation accuracy. The finer resolutions mean more variations in the data. To solve this dilemma, this paper proposes to use NDVI and its derivatives derived from the 250 m MODIS daily surface reflectance data MOD09GQ to estimate crop phenology stages. In this paper, the contaminated data of MOD09GQ are first filtered out using quality flag and cloud information from MOD09GA. The missing data are reconstructed with linear interpolation. To remove noise and to generate differentiable NDVI curve, a new temporally and spatially iterative smoothing procedure that uses Savitzky-Golay filter and area averaging is proposed and the double logistic function fitting method is also presented as a comparison. The phenology stages such as emerged, maturity, and harvest dates are detected from the NDVI curve and its derivatives while other phenological stages that are not characterized by NDVI and its derivatives are indirectly derived from all known information. The initial experimental results indicate that the overall mean error of phenological stage estimation is less than 2 weeks for both corn and soybean, which are better than the results produced using temporal composited products as reported by existing papers. The experimental results for corn and soybean phenological estimation also indicate that different denoising techniques may lead to different results on diverse land cover types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风吹麦田应助VVA采纳,获得30
刚刚
不三不四完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
桐桐应助wwwwwnnnnn采纳,获得30
3秒前
gwfew发布了新的文献求助10
4秒前
4秒前
慕青应助吃面不加醋采纳,获得10
5秒前
香蕉觅云应助莫三颜采纳,获得10
5秒前
5秒前
優質塑膠完成签到,获得积分20
5秒前
五條小羊发布了新的文献求助10
6秒前
6秒前
6秒前
lyh完成签到,获得积分20
6秒前
7秒前
白昼潜行发布了新的文献求助10
8秒前
Jasper应助cistronic采纳,获得10
8秒前
Snoopy发布了新的文献求助10
8秒前
Citrus完成签到,获得积分10
8秒前
8秒前
星辰大海应助周南采纳,获得10
9秒前
xiaoai完成签到 ,获得积分10
9秒前
福路发布了新的文献求助10
9秒前
蔡丽完成签到,获得积分20
9秒前
9秒前
10秒前
zhanghao完成签到,获得积分10
10秒前
10秒前
21ztyang完成签到,获得积分10
10秒前
iebix完成签到,获得积分10
11秒前
犹豫若云发布了新的文献求助10
11秒前
充电宝应助ERIS采纳,获得10
11秒前
温茶青盏完成签到,获得积分20
11秒前
12秒前
12秒前
Snoopy完成签到,获得积分10
13秒前
13秒前
AAA完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286347
求助须知:如何正确求助?哪些是违规求助? 4439154
关于积分的说明 13820291
捐赠科研通 4320921
什么是DOI,文献DOI怎么找? 2371639
邀请新用户注册赠送积分活动 1367266
关于科研通互助平台的介绍 1330704