已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation

共病 医学 纵向研究 严重性 疾病 队列 队列研究 内科学 比例危险模型 人口学 病理 政治学 社会学 法学
作者
Mary E. Charlson,Peter Pompei,Kathy L. Aleš,C. Ronald MacKenzie
出处
期刊:Journal of Chronic Diseases [Elsevier]
卷期号:40 (5): 373-383 被引量:45049
标识
DOI:10.1016/0021-9681(87)90171-8
摘要

The objective of this study was to develop a prospectively applicable method for classifying comorbid conditions which might alter the risk of mortality for use in longitudinal studies. A weighted index that takes into account the number and the seriousness of comorbid disease was developed in a cohort of 559 medical patients. The 1-yr mortality rates for the different scores were: “0”, 12% (181); “1–2”, 26% (225); “3–4”, 52% (71); and “⩾ 5”, 85% (82). The index was tested for its ability to predict risk of death from comorbid disease in the second cohort of 685 patients during a 10-yr follow-up. The percent of patients who died of comorbid disease for the different scores were: “0”, 8% (588); “1”, 25% (54); “2”, 48% (25); “ ⩾ 3”, 59% (18). With each increased level of the comorbidity index, there were stepwise increases in the cumulative mortality attributable to comorbid disease (log rank χ2 = 165; p < 0.0001). In this longer follow-up, age was also a predictor of mortality (p < 0.001). The new index performed similarly to a previous system devised by Kaplan and Feinstein. The method of classifying comorbidity provides a simple, readily applicable and valid method of estimating risk of death from comorbid disease for use in longitudinal studies. Further work in larger populations is still required to refine the approach because the number of patients with any given condition in this study was relatively small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvsehx发布了新的文献求助10
刚刚
剑指东方是为谁应助mori采纳,获得10
2秒前
科研通AI5应助灵巧的尔芙采纳,获得10
2秒前
cdercder应助dt采纳,获得10
5秒前
5秒前
HEAUBOOK应助lvsehx采纳,获得10
6秒前
6秒前
8秒前
瞬间完成签到 ,获得积分10
8秒前
小遇完成签到 ,获得积分10
9秒前
小卒发布了新的文献求助10
10秒前
游戏人间完成签到 ,获得积分10
11秒前
13秒前
16秒前
17秒前
lvsehx完成签到,获得积分10
17秒前
凶狠的盼柳完成签到,获得积分10
17秒前
zc发布了新的文献求助10
22秒前
希望天下0贩的0应助kali采纳,获得10
22秒前
26秒前
29秒前
自由的沛山完成签到,获得积分10
30秒前
Binbin完成签到 ,获得积分10
31秒前
往往超可爱完成签到 ,获得积分10
38秒前
隐形曼青应助junjun采纳,获得10
40秒前
小蘑菇应助liwenmming采纳,获得10
41秒前
41秒前
刘刘溜完成签到,获得积分10
42秒前
TEMPO完成签到,获得积分10
42秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
爆米花应助科研通管家采纳,获得10
44秒前
小二郎应助科研通管家采纳,获得10
44秒前
JamesPei应助科研通管家采纳,获得10
44秒前
搜集达人应助科研通管家采纳,获得10
44秒前
HEAUBOOK应助科研通管家采纳,获得10
44秒前
44秒前
多年以后完成签到,获得积分10
44秒前
46秒前
齐齐完成签到,获得积分10
48秒前
无问完成签到,获得积分10
54秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784640
求助须知:如何正确求助?哪些是违规求助? 3329746
关于积分的说明 10243399
捐赠科研通 3045072
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800458
科研通“疑难数据库(出版商)”最低求助积分说明 759391