灰度
正多边形
数学
点(几何)
窗口(计算)
线段
直线(几何图形)
图像(数学)
强度(物理)
二进制数
路径(计算)
图像处理
算法
计算机视觉
人工智能
计算机科学
几何学
光学
物理
操作系统
算术
程序设计语言
作者
Muhammad Farhan,Olli Yli‐Harja,Antti Niemistö
标识
DOI:10.1016/j.patcog.2012.09.008
摘要
A novel nonparametric concavity point analysis-based method for splitting clumps of convex objects in binary images is presented. The method is based on finding concavity point-pairs by using a variable-size rectangular window. The concavity point-pairs can be either connected with a straight split line or with a line that follows a path of minimum or maximum intensity on an accompanying grayscale image. Using straight lines can result in non-smooth contours. Therefore, post-processing steps that remove acute angles between split lines are proposed. Results obtained with images that have clumps of biological cells show that the method gives accurate results.
科研通智能强力驱动
Strongly Powered by AbleSci AI