CCAST: A Model-Based Gating Strategy to Isolate Homogeneous Subpopulations in a Heterogeneous Population of Single Cells

门控 人口 分类 聚类分析 计算机科学 计算生物学 树(集合论) 单元格排序 模式识别(心理学) 数据挖掘 人工智能 生物 算法 细胞 数学 遗传学 医学 神经科学 环境卫生 数学分析
作者
Benedict Anchang,T. Mary,Xi Zhao,Sylvia K. Plevritis
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:10 (7): e1003664-e1003664 被引量:25
标识
DOI:10.1371/journal.pcbi.1003664
摘要

A model-based gating strategy is developed for sorting cells and analyzing populations of single cells. The strategy, named CCAST, for Clustering, Classification and Sorting Tree, identifies a gating strategy for isolating homogeneous subpopulations from a heterogeneous population of single cells using a data-derived decision tree representation that can be applied to cell sorting. Because CCAST does not rely on expert knowledge, it removes human bias and variability when determining the gating strategy. It combines any clustering algorithm with silhouette measures to identify underlying homogeneous subpopulations, then applies recursive partitioning techniques to generate a decision tree that defines the gating strategy. CCAST produces an optimal strategy for cell sorting by automating the selection of gating markers, the corresponding gating thresholds and gating sequence; all of these parameters are typically manually defined. Even though CCAST is optimized for cell sorting, it can be applied for the identification and analysis of homogeneous subpopulations among heterogeneous single cell data. We apply CCAST on single cell data from both breast cancer cell lines and normal human bone marrow. On the SUM159 breast cancer cell line data, CCAST indicates at least five distinct cell states based on two surface markers (CD24 and EPCAM) and provides a gating sorting strategy that produces more homogeneous subpopulations than previously reported. When applied to normal bone marrow data, CCAST reveals an efficient strategy for gating T-cells without prior knowledge of the major T-cell subtypes and the markers that best define them. On the normal bone marrow data, CCAST also reveals two major mature B-cell subtypes, namely CD123+ and CD123- cells, which were not revealed by manual gating but show distinct intracellular signaling responses. More generally, the CCAST framework could be used on other biological and non-biological high dimensional data types that are mixtures of unknown homogeneous subpopulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳语妍说完成签到,获得积分10
1秒前
wholelink完成签到 ,获得积分10
1秒前
zhouleiwang完成签到,获得积分10
2秒前
2秒前
2秒前
后来应助Oct采纳,获得50
2秒前
2秒前
默默善愁发布了新的文献求助10
3秒前
Ava应助帅气的plum采纳,获得10
4秒前
5秒前
付广文发布了新的文献求助10
5秒前
MyXu发布了新的文献求助10
5秒前
Hello应助www采纳,获得10
6秒前
6秒前
7秒前
7秒前
威武水蜜桃完成签到,获得积分10
7秒前
活泼的稀发布了新的文献求助20
7秒前
minmi发布了新的文献求助20
8秒前
9秒前
优雅的书瑶完成签到 ,获得积分10
9秒前
9秒前
taco发布了新的文献求助20
9秒前
77要减肥发布了新的文献求助10
9秒前
风趣乌冬面完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
rui2820完成签到,获得积分10
10秒前
10秒前
丘比特应助哈哈哈采纳,获得10
11秒前
美好斓发布了新的文献求助10
11秒前
comic发布了新的文献求助10
11秒前
12秒前
12秒前
Twonej应助爱听歌白薇采纳,获得30
12秒前
13秒前
漫漫完成签到 ,获得积分10
13秒前
111完成签到,获得积分10
13秒前
萝卜完成签到,获得积分10
14秒前
xiaoqi完成签到,获得积分10
14秒前
子车茗应助生动的凡采纳,获得20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649163
求助须知:如何正确求助?哪些是违规求助? 4777416
关于积分的说明 15046744
捐赠科研通 4808022
什么是DOI,文献DOI怎么找? 2571211
邀请新用户注册赠送积分活动 1527796
关于科研通互助平台的介绍 1486697