均方误差
控制理论(社会学)
梯度法
算法
数学
稳态(化学)
平方(代数)
最小均方误差
递归最小平方滤波器
计算机科学
应用数学
统计
自适应滤波器
人工智能
控制(管理)
几何学
物理化学
估计员
化学
标识
DOI:10.1109/tsp.2005.851110
摘要
In this paper, a new control mechanism for the variable forgetting factor (VFF) of the recursive least square (RLS) adaptive algorithm is presented. The control algorithm is basically a gradient-based method of which the gradient is derived from an improved mean square error analysis of RLS. The new mean square error analysis exploits the correlation of the inverse of the correlation matrix with itself that yields improved theoretical results, especially in the transient and steady-state mean square error. It is shown that the theoretical analysis is close to simulation results for different forgetting factors and different model orders. The analysis yields a dynamic equation of mean square error that can be used to derive a dynamic equation of the gradient of mean square error to control the forgetting factor. The dynamic equation can produce a positive gradient when the error is large and a negative gradient when the error is in the steady state. Compared with other variable forgetting factor algorithms, the new control algorithm gives fast tracking and small mean square model error for different signal-to-noise ratios (SNRs).
科研通智能强力驱动
Strongly Powered by AbleSci AI