Causal Rule Sets for Identifying Subgroups with Enhanced Treatment Effects

可解释性 机器学习 贝叶斯概率 计算机科学 过度拟合 人工智能 启发式 数据挖掘 数学 数学优化 人工神经网络
作者
Tong Wang,Cynthia Rudin
出处
期刊:Informs Journal on Computing 卷期号:34 (3): 1626-1643 被引量:11
标识
DOI:10.1287/ijoc.2021.1143
摘要

A key question in causal inference analyses is how to find subgroups with elevated treatment effects. This paper takes a machine learning approach and introduces a generative model, causal rule sets (CRS), for interpretable subgroup discovery. A CRS model uses a small set of short decision rules to capture a subgroup in which the average treatment effect is elevated. We present a Bayesian framework for learning a causal rule set. The Bayesian model consists of a prior that favors simple models for better interpretability as well as avoiding overfitting and a Bayesian logistic regression that captures the likelihood of data, characterizing the relation between outcomes, attributes, and subgroup membership. The Bayesian model has tunable parameters that can characterize subgroups with various sizes, providing users with more flexible choices of models from the treatment-efficient frontier. We find maximum a posteriori models using iterative discrete Monte Carlo steps in the joint solution space of rules sets and parameters. To improve search efficiency, we provide theoretically grounded heuristics and bounding strategies to prune and confine the search space. Experiments show that the search algorithm can efficiently recover true underlying subgroups. We apply CRS on public and real-world data sets from domains in which interpretability is indispensable. We compare CRS with state-of-the-art rule-based subgroup discovery models. Results show that CRS achieves consistently competitive performance on data sets from various domains, represented by high treatment-efficient frontiers. Summary of Contribution: This paper is motivated by the large heterogeneity of treatment effect in many applications and the need to accurately locate subgroups for enhanced treatment effect. Existing methods either rely on prior hypotheses to discover subgroups or greedy methods, such as tree-based recursive partitioning. Our method adopts a machine learning approach to find an optimal subgroup learned with a carefully global objective. Our model is more flexible in capturing subgroups by using a set of short decision rules compared with tree-based baselines. We evaluate our model using a novel metric, treatment-efficient frontier, that characterizes the trade-off between the subgroup size and achievable treatment effect, and our model demonstrates better performance than baseline models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助金勇采纳,获得10
刚刚
MHCL完成签到 ,获得积分10
刚刚
舒服的觅夏完成签到,获得积分10
2秒前
学渣一枚完成签到 ,获得积分10
3秒前
小小小完成签到,获得积分10
3秒前
4秒前
demoestar完成签到 ,获得积分10
5秒前
lcjynwe完成签到,获得积分10
5秒前
中岛悠斗完成签到,获得积分10
5秒前
哈哈哈哈哈完成签到,获得积分10
6秒前
糖诗完成签到 ,获得积分10
7秒前
7秒前
比亚迪士尼在逃公主完成签到,获得积分10
7秒前
ymxlcfc完成签到 ,获得积分10
8秒前
追寻师完成签到 ,获得积分10
8秒前
8秒前
yull完成签到,获得积分10
8秒前
jiayoujijin完成签到 ,获得积分10
9秒前
赵海帆完成签到,获得积分10
9秒前
zsj完成签到,获得积分10
9秒前
9秒前
多多指教完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
包容灵萱发布了新的文献求助10
13秒前
Mr.Jian完成签到,获得积分0
14秒前
zsqqqqq完成签到,获得积分10
14秒前
鳗鱼不尤完成签到,获得积分10
14秒前
大模型应助majf采纳,获得10
15秒前
乔磊发布了新的文献求助10
15秒前
踏实映天完成签到 ,获得积分10
16秒前
彪壮的含双完成签到,获得积分10
16秒前
丰富的大白菜真实的钥匙完成签到,获得积分10
17秒前
沉静的浩然完成签到,获得积分10
18秒前
YY完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
高高的起眸完成签到,获得积分10
19秒前
GC_AIBio完成签到,获得积分20
20秒前
qz完成签到,获得积分10
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4223412
求助须知:如何正确求助?哪些是违规求助? 3756496
关于积分的说明 11807574
捐赠科研通 3418896
什么是DOI,文献DOI怎么找? 1876405
邀请新用户注册赠送积分活动 930076
科研通“疑难数据库(出版商)”最低求助积分说明 838358