计算机科学
二次方程
应用数学
指数函数
基质(化学分析)
人工神经网络
指数稳定性
国家(计算机科学)
线性矩阵不等式
马尔可夫链
数学优化
数学
控制理论(社会学)
算法
数学分析
非线性系统
人工智能
控制(管理)
几何学
物理
材料科学
机器学习
量子力学
复合材料
作者
Xiaoman Liu,Haiyang Zhang,Lianglin Xiong,Tao Wu,Zhaoyong Tang
标识
DOI:10.1016/j.procs.2022.01.163
摘要
This paper is concerned with an exponential state estimation problem for a class of Markov Jump Neural Networks (MJNNs) with Time-varying Delay (TVD). Firstly, to derive a tighter bound of Exponential-type Integral Quadratic Terms (EIQTs), a new Free-matrix Exponential-type Inequality (FMEI) is provided, which includes some existing ones as its special cases. Secondly, by fully considering the information of attenuation exponent and TVD, a novel Lyapunov-Krasovskii Functional (LKF) is constructed. Then, by employing the new FMEI and other analytical techniques, a less conservative criterion guaranteeing the stochastic stability of the error system is obtained in form of Linear Matrix Inequalities (LMIs). In the end, a numerical example is given to show the effectiveness of the obtained result.
科研通智能强力驱动
Strongly Powered by AbleSci AI